Wireless agents for brain recording and stimulation modalities.

Ilhan Bok, Adam Vareberg, Yash Gokhale, Suyash Bhatt, Emily Masterson, Jack Phillips, Tianxiang Zhu, Xiaoxuan Ren, Aviad Hai
{"title":"Wireless agents for brain recording and stimulation modalities.","authors":"Ilhan Bok, Adam Vareberg, Yash Gokhale, Suyash Bhatt, Emily Masterson, Jack Phillips, Tianxiang Zhu, Xiaoxuan Ren, Aviad Hai","doi":"10.1186/s42234-023-00122-5","DOIUrl":null,"url":null,"abstract":"<p><p>New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"9 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-023-00122-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大脑记录和刺激模式的无线代理。
与医疗模式无线交互的新型传感器和调制器为原位大脑记录和刺激开辟了未知的途径。持续的小型化、材料精细化以及对特定神经生理学和神经化学过程的敏感性正在激发新的能力,这些能力开始超越传统笨重和侵入性有线探针的限制。在这里,我们调查了不同操作领域的当前最先进的代理,并根据规模、交付、特异性和时空分辨率评估了可能性。我们首先描述了在射频(RF)范围或以下操作、具有简单近场传输的可植入和可注射微纳米级电子设备,并继续描述了在磁共振成像(MRI)中用作动态造影剂的更复杂的设备、纳米颗粒和生物化学分子偶联物,超声(US)转导和其他功能性断层摄影模式。我们评估了其中一些技术通过新兴的探针和材料提供刺激和神经调控的能力,这些探针和材料可提供微创磁、电、热和光遗传学刺激。这些方法正在改变与兼容成像系统相结合的现成技术,并有望扩大神经和神经科学诊断和治疗的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Comparisons of different electrical stimulation modalities for treating visceral pain in a rodent model of irritable bowel syndrome. Blue light stimulation of the blind spot in human: from melanopsin to clinically relevant biomarkers of myopia. Machine learning-optimized non-invasive brain stimulation and treatment response classification for major depression. Design and development of a machine-learning-driven opioid overdose risk prediction tool integrated in electronic health records in primary care settings. Virtual reality in stroke recovery: a meta-review of systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1