Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay

IF 4.7 Q1 VIROLOGY Tumour Virus Research Pub Date : 2023-09-27 DOI:10.1016/j.tvr.2023.200271
Shengke Zhang , Chenglu Jiang , Lai Jiang , Haiqing Chen , Jinbang Huang , Xinrui Gao , Zhijia Xia , Lisa Jia Tran , Jing Zhang , Hao Chi , Guanhu Yang , Gang Tian
{"title":"Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay","authors":"Shengke Zhang ,&nbsp;Chenglu Jiang ,&nbsp;Lai Jiang ,&nbsp;Haiqing Chen ,&nbsp;Jinbang Huang ,&nbsp;Xinrui Gao ,&nbsp;Zhijia Xia ,&nbsp;Lisa Jia Tran ,&nbsp;Jing Zhang ,&nbsp;Hao Chi ,&nbsp;Guanhu Yang ,&nbsp;Gang Tian","doi":"10.1016/j.tvr.2023.200271","DOIUrl":null,"url":null,"abstract":"<div><p>HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regrettably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV-HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic curatives' emergence for HBV-HCC.</p></div>","PeriodicalId":52381,"journal":{"name":"Tumour Virus Research","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638043/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumour Virus Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666679023000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regrettably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV-HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic curatives' emergence for HBV-HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和人工神经网络构建乙型肝炎相关肝细胞癌的诊断模型,并通过免疫测定揭示相关性。
HBV感染使肝细胞癌(HCC)的易感性急剧上升,这是大多数HCC病例的原因。HBV驱动的免疫介导的肝细胞损伤显著促进HCC的进展。令人遗憾的是,不明显的早期HCC症状往往最终导致诊断滞后。尽管如此,手术治疗的早期HCC患者喜欢提高五年生存率。相比之下,晚期HCC对放疗、化疗和手术等常规干预措施的反应较弱,导致生存率下降。这项研究试图利用生物信息学框架挖掘HBV-HCC的诊断标志基因,从而完善早期HBV-肝癌检测。通过差异分析和加权基因共表达网络分析(WGCNA)筛选候选基因。使用三种不同的机器学习算法发现了三个特征基因(HHIP、CXCL14和CDHR2)。融合这些基因产生了一个创新的人工神经网络(ANN)诊断蓝图,预示着减轻患者负担和提高生活质量。免疫分析显示,与孤立性HCC相比,HBV-HCC患者的免疫损伤加重。通过一致聚类,HBV-HCC分为两种亚型(C1和C2),后者可能表明免疫损伤较轻。基于这些特征基因的诊断模型显示出强大和可转移的预后潜力,为早期HBV-HCC诊断提供了新的前景。这场详尽的免疫之旅将加速HBV-HCC免疫治疗药物的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tumour Virus Research
Tumour Virus Research Medicine-Infectious Diseases
CiteScore
6.50
自引率
2.30%
发文量
16
审稿时长
56 days
期刊最新文献
The imprint of viral oncoproteins on the variable clinical behavior among human papilloma virus-related oropharyngeal squamous cell carcinomas. Genomic diversity of HPV6 and HPV11 in recurrent respiratory papillomatosis: Association with malignant transformation in the lungs and clinical outcomes The SV40 virus enhancer functions as a somatic hypermutation-targeting element with potential tumorigenic activity Opportunities to advance cervical cancer prevention and care A new role for human papillomavirus 16 E2: Mitotic activation of the DNA damage response to promote viral genome segregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1