Ce-doped indium oxide nanozymes with peroxidase-like activity induced by cerium–indium synergy for colourimetric detection of H2O2

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2023-09-22 DOI:10.1039/D3NJ02985A
Bin Liu, Haoliang Ruan, Chengyi Li, Jie Yao, Bei Wei, Lei Wang, Shurong Ban and Jun Xie
{"title":"Ce-doped indium oxide nanozymes with peroxidase-like activity induced by cerium–indium synergy for colourimetric detection of H2O2","authors":"Bin Liu, Haoliang Ruan, Chengyi Li, Jie Yao, Bei Wei, Lei Wang, Shurong Ban and Jun Xie","doi":"10.1039/D3NJ02985A","DOIUrl":null,"url":null,"abstract":"<p >In this work, InCe<small><sub><em>x</em></sub></small> nanoparticles with different In–Ce ratios were synthesized by a simple co-precipitation method and InCe<small><sub><em>x</em></sub></small> nanoparticles could be used as a mimic of peroxidase to catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and produce the typical blue ox TMB. In addition, the prepared InCe<small><sub><em>x</em></sub></small> nanoparticles showed excellent peroxidase-like catalytic properties compared with pure CeO<small><sub>2</sub></small> and pure In<small><sub>2</sub></small>O<small><sub>3</sub></small>. InCe<small><sub>0.1</sub></small> exhibited the best peroxidase-like activity, which was mainly attributed to the indium–cerium synergy, which accelerated the TMB and H<small><sub>2</sub></small>O<small><sub>2</sub></small> electron transfer rate between them. Based on the above findings, a facile and sensitive H<small><sub>2</sub></small>O<small><sub>2</sub></small> detection system with a sensitive response range of 10–100 μM and a detection limit of 5 μM for H<small><sub>2</sub></small>O<small><sub>2</sub></small> was successfully proposed. This work synthesizes nanomaterials with peroxidase-like activity by modifying In<small><sub>2</sub></small>O<small><sub>3</sub></small> through a simple co-precipitation method and offers new insights into the search for novel peroxidase mimics.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 39","pages":" 18476-18484"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/nj/d3nj02985a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, InCex nanoparticles with different In–Ce ratios were synthesized by a simple co-precipitation method and InCex nanoparticles could be used as a mimic of peroxidase to catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 and produce the typical blue ox TMB. In addition, the prepared InCex nanoparticles showed excellent peroxidase-like catalytic properties compared with pure CeO2 and pure In2O3. InCe0.1 exhibited the best peroxidase-like activity, which was mainly attributed to the indium–cerium synergy, which accelerated the TMB and H2O2 electron transfer rate between them. Based on the above findings, a facile and sensitive H2O2 detection system with a sensitive response range of 10–100 μM and a detection limit of 5 μM for H2O2 was successfully proposed. This work synthesizes nanomaterials with peroxidase-like activity by modifying In2O3 through a simple co-precipitation method and offers new insights into the search for novel peroxidase mimics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铈-铟协同诱导具有过氧化物酶样活性的铈掺杂氧化铟纳米酶用于H2O2的比色检测
本工作采用简单的共沉淀法合成了不同In–Ce比例的InCex纳米颗粒,InCex纳米粒子可作为过氧化物酶的模拟物,催化H2O2氧化3,3′,5,5′-四甲基联苯胺(TMB),产生典型的蓝氧化TMB。此外,与纯CeO2和纯In2O3相比,所制备的InCex纳米颗粒显示出优异的过氧化物酶样催化性能。InCe0.1表现出最好的过氧化物酶样活性,这主要归因于铟-铈的协同作用,加速了TMB和H2O2之间的电子转移速率。基于上述发现,成功提出了一种简单灵敏的H2O2检测系统,其灵敏响应范围为10–100μM,H2O2检测限为5μM。这项工作通过简单的共沉淀方法修饰In2O3,合成了具有过氧化物酶样活性的纳米材料,并为寻找新的过氧化物酶模拟物提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Preparation of high-toughness PAM-Gel/CNTs-RGO hydrogel and its electromagnetic shielding properties† A green method for the synthesis of lubricating ester oil using a bi-functional ionic liquid† Photophysical and optoelectronic studies of 1.06 and 13.3 μm emissive neodymium complexes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1