{"title":"Susceptibility to polarization type potential induced degradation in commercial bifacial p-PERC PV modules","authors":"Farrukh ibne Mahmood, Fang Li, Peter Hacke, Cécile Molto, Dylan Colvin, Hubert Seigneur, Govindasamy TamizhMani","doi":"10.1002/pip.3724","DOIUrl":null,"url":null,"abstract":"<p>Potential induced degradation (PID) is a reliability issue affecting photovoltaic (PV) modules, mainly when PV strings operate under high voltages in hot/humid conditions. Polarization-type PID (PID-p) has been known to decrease module performance quickly. PID-p can be reduced or recovered under the light in some cases, but this effect, as expected, would be less pronounced on the rear side of bifacial PV modules receiving lower irradiance. As bifacial PV modules are projected to dominate the PV market within the next 10 years, it is crucial to understand the PID-p issue in bifacial modules better. In this study, we performed indoor PID testing to induce PID-p on 14 commercial bifacial p-PERC modules with three different module constructions from three manufacturers. Four rounds (+ve and −ve polarities for front and rear sides) of PID testing are done at 25°C, 54% relative humidity (RH) for 168 h using the aluminum foil method. Each module side (front cell side and back cell side) is tested individually under both negative and positive voltage bias. The results show that the highest degradation of 32% in maximum power (Pmax) at standard test conditions (1000 W/m<sup>2</sup>) and 51% at low irradiance (200 W/m<sup>2</sup>) has been observed in some cases. Recovery under sunlight is also done, and outcomes show a near-complete recovery in Pmax. This study presents an extensive experimental methodology and a detailed analysis to systematically and simultaneously/sequentially evaluate multiple construction types of bifacial modules to the PID-p susceptibility and recovery.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 11","pages":"1078-1090"},"PeriodicalIF":8.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3724","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Potential induced degradation (PID) is a reliability issue affecting photovoltaic (PV) modules, mainly when PV strings operate under high voltages in hot/humid conditions. Polarization-type PID (PID-p) has been known to decrease module performance quickly. PID-p can be reduced or recovered under the light in some cases, but this effect, as expected, would be less pronounced on the rear side of bifacial PV modules receiving lower irradiance. As bifacial PV modules are projected to dominate the PV market within the next 10 years, it is crucial to understand the PID-p issue in bifacial modules better. In this study, we performed indoor PID testing to induce PID-p on 14 commercial bifacial p-PERC modules with three different module constructions from three manufacturers. Four rounds (+ve and −ve polarities for front and rear sides) of PID testing are done at 25°C, 54% relative humidity (RH) for 168 h using the aluminum foil method. Each module side (front cell side and back cell side) is tested individually under both negative and positive voltage bias. The results show that the highest degradation of 32% in maximum power (Pmax) at standard test conditions (1000 W/m2) and 51% at low irradiance (200 W/m2) has been observed in some cases. Recovery under sunlight is also done, and outcomes show a near-complete recovery in Pmax. This study presents an extensive experimental methodology and a detailed analysis to systematically and simultaneously/sequentially evaluate multiple construction types of bifacial modules to the PID-p susceptibility and recovery.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.