Three-Dimensional Graphene Promotes the Proliferation of Cholinergic Neurons.

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY Cells Tissues Organs Pub Date : 2024-01-01 Epub Date: 2023-10-09 DOI:10.1159/000534255
Ziyun Jiang, Linhong Zhou, Miao Xiao, Sancheng Ma, Guosheng Cheng
{"title":"Three-Dimensional Graphene Promotes the Proliferation of Cholinergic Neurons.","authors":"Ziyun Jiang, Linhong Zhou, Miao Xiao, Sancheng Ma, Guosheng Cheng","doi":"10.1159/000534255","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.</p><p><strong>Methods: </strong>In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.</p><p><strong>Results: </strong>Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.</p><p><strong>Conclusions: </strong>These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"316-325"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000534255","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.

Methods: In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.

Results: Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.

Conclusions: These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维石墨烯促进胆碱能神经元的增殖。
背景:基底前脑胆碱能神经元(BFCNs)的早期实质性丧失是阿尔茨海默病的常见特征,功能性BFCNs的退化与学习和记忆缺陷有关。作为一种用于神经干细胞生长的生物相容性导电支架,三维石墨烯泡沫(3D-GF)支持在组织工程和再生医学中的应用。尽管3D-GF支架对分化的影响已经得到证实,但其对BFCNs产生的影响仍然未知。方法:在本研究中,我们使用3D-GF作为神经祖细胞(NPC)的培养基,并证明这种支架材料在保持优异的细胞活力和增殖的同时促进了BFCNs的分化。结果:免疫荧光分析、RT-PCR、蛋白质印迹和ELISA显示,3D-GF在分化21天时,BFCNs的比例约为30.5%,而TCPS组仅为9.7%。此外,细胞粘附研究表明,3D-GG支架增强了包括长春花蛋白、整合素和N-钙粘蛋白在内的粘附蛋白的表达。这些发现表明,3D-GF支架材料是区分BFCNs和NPCs的优选候选材料。结论:这些结果为3D-GF作为神经支架应用于基于NPCs的胆碱能神经元治疗提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
期刊最新文献
Histone Demethylase KDM6B Promotes Chondrogenic Differentiation Potential of Stem Cells from the Apical Papilla Via HES1. Novel Method to Assess Macrophage Phenotype Using Eluted Media. Care and Treatment for an Antiphospholipid Syndrome-Related Lower Limb Skin Ulcer Unhealed for 7 Years: A Case Report. Erratum. Functional Role of the Incisive Duct in Neonatal Dogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1