Investigating the challenges of biogas provision in water limited environments through laboratory scale biodigesters.

Jennifer Wardle, Davide Dionisi, Jo Smith
{"title":"Investigating the challenges of biogas provision in water limited environments through laboratory scale biodigesters.","authors":"Jennifer Wardle,&nbsp;Davide Dionisi,&nbsp;Jo Smith","doi":"10.1080/14786451.2023.2235022","DOIUrl":null,"url":null,"abstract":"<p><p>The potential for biogas provision through household-scale anaerobic digestion in rural sub-Saharan Africa is limited due to perceived water shortages. The most common substrate is animal dung diluted 1:1 with water. Two experimental methods tested the potential of reducing water demand. The first experiment compared the chemical oxygen demand (COD) and volatile solid removal of four cow dung dilutions ranging from 3.5-10.6% total solids. In the second experiment, bioslurry filtrate was recirculated back into the fresh substrate at different concentrations. The highest COD removal rate of 28.3% was obtained from mixing equal volumes of dung with filtrate (mean total solids 7.4%) while the highest methane production rate of 0.40 g/L/day, calculated from COD balance, was obtained from undiluted cow dung (total solids 10.6%). Results suggest the potential for a 75-100% reduction in water demand.</p>","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"42 1","pages":"829-844"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2235022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The potential for biogas provision through household-scale anaerobic digestion in rural sub-Saharan Africa is limited due to perceived water shortages. The most common substrate is animal dung diluted 1:1 with water. Two experimental methods tested the potential of reducing water demand. The first experiment compared the chemical oxygen demand (COD) and volatile solid removal of four cow dung dilutions ranging from 3.5-10.6% total solids. In the second experiment, bioslurry filtrate was recirculated back into the fresh substrate at different concentrations. The highest COD removal rate of 28.3% was obtained from mixing equal volumes of dung with filtrate (mean total solids 7.4%) while the highest methane production rate of 0.40 g/L/day, calculated from COD balance, was obtained from undiluted cow dung (total solids 10.6%). Results suggest the potential for a 75-100% reduction in water demand.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过实验室规模的生物除菌器调查在缺水环境中提供沼气的挑战。
由于水资源短缺,撒哈拉以南非洲农村通过家庭规模厌氧消化提供沼气的潜力有限。最常见的基质是用水1:1稀释的动物粪便。两种实验方法测试了减少水需求的潜力。第一个实验比较了总固体含量在3.5-10.6%范围内的四种牛粪稀释液的化学需氧量(COD)和挥发性固体去除率。在第二个实验中,将生物泥浆滤液以不同浓度再循环回新鲜基质中。将等体积的粪便与滤液混合可获得28.3%的最高COD去除率(平均总固体含量7.4%),而根据COD平衡计算,未稀释的牛粪可获得0.40g/L/天的最高甲烷产生率(总固体含量10.6%)。结果表明,需水量有可能减少75-100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
3.20%
发文量
52
期刊介绍: Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.
期刊最新文献
Balance™ methodology – converting carbon finance to biodiversity creation Analysis of self-generated PV energy consumption profiles in prosumers microgrid Pilot scale study of anaerobic treatment of food waste using ambient and solar heated digesters Green transport and renewable power: an integrated analysis for India's future Gridlock in compromise, or is multi-objective optimisation possible in renewable energy planning? A stakeholder analysis using scenario-MCDA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1