{"title":"Feature-weight based measurement of cancerous transcriptome using cohort-wide and sample-specific information.","authors":"Qilu Wang, Jiaoyang Jessie Song, Feng Zhang","doi":"10.1007/s13402-023-00879-6","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying cancerous samples or cells using transcriptomic data is critical for cancer related basic research, early diagnosis, and targeted therapy. However, the high transcriptional heterogeneity of cancers still hinders people from accurately recognizing cancerous transcriptome using bulk, single-cell, or spatial RNA-seq data. Here, we present a novel method named FWP (Feature Weight Pro) that helps measure cancerous transcriptome using transcriptomic data. The workflow of FWP is, first, to calculate feature weights using the training dataset, and then, for each sample in the testing dataset, calculate the feature-weight based final score by combining the cohort-wide and sample-specific information. Those two types of information are utilized through conducting weighted principal component analysis and calculating correlation perturbations. The effectiveness and superiority of FWP over other methods are shown by using bulk, single-cell, and spatial RNA-seq data of multiple cancer types. In addition, the high robustness and efficiency of FWP are also demonstrated by using different numbers of features and cells, respectively. FWP is available at https://github.com/jumphone/fwp .</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"711-715"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00879-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying cancerous samples or cells using transcriptomic data is critical for cancer related basic research, early diagnosis, and targeted therapy. However, the high transcriptional heterogeneity of cancers still hinders people from accurately recognizing cancerous transcriptome using bulk, single-cell, or spatial RNA-seq data. Here, we present a novel method named FWP (Feature Weight Pro) that helps measure cancerous transcriptome using transcriptomic data. The workflow of FWP is, first, to calculate feature weights using the training dataset, and then, for each sample in the testing dataset, calculate the feature-weight based final score by combining the cohort-wide and sample-specific information. Those two types of information are utilized through conducting weighted principal component analysis and calculating correlation perturbations. The effectiveness and superiority of FWP over other methods are shown by using bulk, single-cell, and spatial RNA-seq data of multiple cancer types. In addition, the high robustness and efficiency of FWP are also demonstrated by using different numbers of features and cells, respectively. FWP is available at https://github.com/jumphone/fwp .
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.