Half-Hop: A graph upsampling approach for slowing down message passing.

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, Michal Valko, Petar Veličković, Eva L Dyer
{"title":"Half-Hop: A graph upsampling approach for slowing down message passing.","authors":"Mehdi Azabou,&nbsp;Venkataramana Ganesh,&nbsp;Shantanu Thakoor,&nbsp;Chi-Heng Lin,&nbsp;Lakshmi Sathidevi,&nbsp;Ran Liu,&nbsp;Michal Valko,&nbsp;Petar Veličković,&nbsp;Eva L Dyer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding \"slow nodes\" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"1341-1360"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559225/pdf/nihms-1931959.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding "slow nodes" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半跳:一种用于减慢消息传递速度的图形上采样方法。
消息传递神经网络在图结构数据方面取得了很大的成功。然而,在许多情况下,当相邻节点属于不同的类时,消息传递可能会导致过度平滑或失败。在这项工作中,我们介绍了一个简单而通用的框架,用于改进消息传递神经网络的学习。我们的方法本质上是通过在每条边上添加“慢节点”来对原始图中的边进行上采样,这些节点可以调解源节点和目标节点之间的通信。我们的方法只修改输入图,使其即插即用,并且易于与现有模型一起使用。为了理解减缓信息传递的好处,我们提供了理论和实证分析。我们报告了几个监督和自监督基准的结果,并显示了全面的改进,特别是在相邻节点更有可能具有不同标签的异亲条件下。最后,我们展示了如何使用我们的方法来生成自监督学习的增强,其中将慢节点随机引入图中的不同边,以生成具有可变路径长度的多尺度视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1