Bayesian bi-level variable selection for genome-wide survival study.

Genomics & informatics Pub Date : 2023-09-01 Epub Date: 2023-06-28 DOI:10.5808/gi.23047
Eunjee Lee, Joseph G Ibrahim, Hongtu Zhu
{"title":"Bayesian bi-level variable selection for genome-wide survival study.","authors":"Eunjee Lee,&nbsp;Joseph G Ibrahim,&nbsp;Hongtu Zhu","doi":"10.5808/gi.23047","DOIUrl":null,"url":null,"abstract":"<p><p>Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and evolution of cognitive impairments, often considered a transitional stage to Alzheimer's disease (AD). The genetic traits of MCI patients who experience a rapid progression to AD can enhance early diagnosis capabilities and facilitate drug discovery for AD. While a genome-wide association study (GWAS) is a standard tool for identifying single nucleotide polymorphisms (SNPs) related to a disease, it fails to detect SNPs with small effect sizes due to stringent control for multiple testing. Additionally, the method does not consider the group structures of SNPs, such as genes or linkage disequilibrium blocks, which can provide valuable insights into the genetic architecture. To address the limitations, we propose a Bayesian bi-level variable selection method that detects SNPs associated with time of conversion from MCI to AD. Our approach integrates group inclusion indicators into an accelerated failure time model to identify important SNP groups. Additionally, we employ data augmentation techniques to impute censored time values using a predictive posterior. We adapt Dirichlet-Laplace shrinkage priors to incorporate the group structure for SNP-level variable selection. In the simulation study, our method outperformed other competing methods regarding variable selection. The analysis of Alzheimer's Disease Neuroimaging Initiative (ADNI) data revealed several genes directly or indirectly related to AD, whereas a classical GWAS did not identify any significant SNPs.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"21 3","pages":"e28"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.23047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and evolution of cognitive impairments, often considered a transitional stage to Alzheimer's disease (AD). The genetic traits of MCI patients who experience a rapid progression to AD can enhance early diagnosis capabilities and facilitate drug discovery for AD. While a genome-wide association study (GWAS) is a standard tool for identifying single nucleotide polymorphisms (SNPs) related to a disease, it fails to detect SNPs with small effect sizes due to stringent control for multiple testing. Additionally, the method does not consider the group structures of SNPs, such as genes or linkage disequilibrium blocks, which can provide valuable insights into the genetic architecture. To address the limitations, we propose a Bayesian bi-level variable selection method that detects SNPs associated with time of conversion from MCI to AD. Our approach integrates group inclusion indicators into an accelerated failure time model to identify important SNP groups. Additionally, we employ data augmentation techniques to impute censored time values using a predictive posterior. We adapt Dirichlet-Laplace shrinkage priors to incorporate the group structure for SNP-level variable selection. In the simulation study, our method outperformed other competing methods regarding variable selection. The analysis of Alzheimer's Disease Neuroimaging Initiative (ADNI) data revealed several genes directly or indirectly related to AD, whereas a classical GWAS did not identify any significant SNPs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组生存研究的贝叶斯双层变量选择。
轻度认知障碍(MCI)是一种以认知障碍的发作和演变为特征的临床综合征,通常被认为是阿尔茨海默病(AD)的过渡阶段。快速进展为AD的MCI患者的遗传特征可以提高AD的早期诊断能力,并有助于药物发现。虽然全基因组关联研究(GWAS)是识别与疾病相关的单核苷酸多态性(SNPs)的标准工具,但由于对多重检测的严格控制,它无法检测到影响较小的SNPs。此外,该方法没有考虑SNPs的群体结构,如基因或连锁不平衡块,这可以为遗传结构提供有价值的见解。为了解决这些局限性,我们提出了一种贝叶斯双层变量选择方法,该方法检测与从MCI转换为AD的时间相关的SNP。我们的方法将组包含指标集成到加速故障时间模型中,以识别重要的SNP组。此外,我们使用数据扩充技术,使用预测后验法估算截尾时间值。我们采用狄利克雷-拉普拉斯收缩先验来结合SNP水平变量选择的组结构。在模拟研究中,我们的方法在变量选择方面优于其他竞争方法。对阿尔茨海默病神经成像倡议(ADNI)数据的分析揭示了几个与AD直接或间接相关的基因,而经典的GWAS没有发现任何显著的SNPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing COVID-19 progression with Markov multistage models: insights from a Korean cohort. Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. DeepDoublet identifies neighboring cell-dependent gene expression. Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features. Rare disease genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1