Hongling Wang, Fen Su, Yanyan Wang, Xingxing Wu and Yonggui Robin Chi
{"title":"Direct coupling of inert C–H bonds in NHC organocatalysis","authors":"Hongling Wang, Fen Su, Yanyan Wang, Xingxing Wu and Yonggui Robin Chi","doi":"10.1039/D3QO01129A","DOIUrl":null,"url":null,"abstract":"<p >Direct coupling of inert C–H bonds by N-heterocyclic carbenes (NHCs) represents a fascinating area of research in organocatalysis. Recently, several notable studies have disclosed the potential of NHCs to directly functionalize latent C–H bonds of diverse simple molecules (<em>e.g.</em>, ethers, amines, and arenes). These methodologies offer straightforward and efficient routes for C–C bond-forming transformations by diminishing the need for prefunctionalization manipulations of inert C–H bonds, allowing for the synthesis of a broad range of high value-added functional ketone molecules. Consequently, this highlight aims to present the latest advancements in NHC organocatalysis, specifically focusing on direct coupling functionalization of inert C–H bonds involving the electron or proton transfer process (ET/PT pathways) and hydrogen atom transfer pathway (HAT pathway).</p>","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":" 20","pages":" 5291-5295"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qo/d3qo01129a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Direct coupling of inert C–H bonds by N-heterocyclic carbenes (NHCs) represents a fascinating area of research in organocatalysis. Recently, several notable studies have disclosed the potential of NHCs to directly functionalize latent C–H bonds of diverse simple molecules (e.g., ethers, amines, and arenes). These methodologies offer straightforward and efficient routes for C–C bond-forming transformations by diminishing the need for prefunctionalization manipulations of inert C–H bonds, allowing for the synthesis of a broad range of high value-added functional ketone molecules. Consequently, this highlight aims to present the latest advancements in NHC organocatalysis, specifically focusing on direct coupling functionalization of inert C–H bonds involving the electron or proton transfer process (ET/PT pathways) and hydrogen atom transfer pathway (HAT pathway).
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.