Bin Zhang, Ruowen Sun, Min Gu, Zehui Jiang, Ye Wang, Linlin Zhang, Xiaoyang Liu, Zuofei Chi
{"title":"RNA-binding protein NOVA1 promotes acute T-lymphocyte leukemia progression by stabilizing USP44 mRNA.","authors":"Bin Zhang, Ruowen Sun, Min Gu, Zehui Jiang, Ye Wang, Linlin Zhang, Xiaoyang Liu, Zuofei Chi","doi":"10.1139/bcb-2023-0092","DOIUrl":null,"url":null,"abstract":"<p><p>Acute T-lymphocyte leukemia (T-ALL) is a malignant tumor disease. RNA-binding protein neotumor ventral antigen-1 (NOVA1) is highly expressed in bone marrow mononuclear cells of T-ALL patients, while the role of NOVA1 in T-ALL progression remains unknown. The gain- and loss-of-function studies for NOVA1 were performed in Jurkat and CCRF-CEM cells. NOVA1 overexpression promoted cell proliferation and cell cycle progression. NOVA1 knockdown increased the apoptosis rate of T-ALL cells. Ubiquitin-specific protease 44 (USP44), a nuclear protein with deubiquitinase catalytic activity, has been reported to play an oncogene role in human T-cell leukemia. USP44 expression was positively associated with NOVA1, and RNA immunoprecipitation assay verified the binding of NOVA1 to the mRNA of USP44. USP44 knockdown partially abolished NOVA1-induced cell proliferation and inhibition of apoptosis. The in vivo xenograft experiment was performed by injection of T-ALL tumor cells into the tail vein of NOD/SCID mice. The knockdown of NOVA1 had lower tumorigenicity. NOVA1 knockdown alleviated pathological changes in lung and spleen tissues, and increased the overall survival period and the weight of T-ALL mice. Thus, NOVA1 acts as an accelerator in T-ALL, and its function might be achieved by binding to and stabilizing USP44 mRNA.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"60-72"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0092","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute T-lymphocyte leukemia (T-ALL) is a malignant tumor disease. RNA-binding protein neotumor ventral antigen-1 (NOVA1) is highly expressed in bone marrow mononuclear cells of T-ALL patients, while the role of NOVA1 in T-ALL progression remains unknown. The gain- and loss-of-function studies for NOVA1 were performed in Jurkat and CCRF-CEM cells. NOVA1 overexpression promoted cell proliferation and cell cycle progression. NOVA1 knockdown increased the apoptosis rate of T-ALL cells. Ubiquitin-specific protease 44 (USP44), a nuclear protein with deubiquitinase catalytic activity, has been reported to play an oncogene role in human T-cell leukemia. USP44 expression was positively associated with NOVA1, and RNA immunoprecipitation assay verified the binding of NOVA1 to the mRNA of USP44. USP44 knockdown partially abolished NOVA1-induced cell proliferation and inhibition of apoptosis. The in vivo xenograft experiment was performed by injection of T-ALL tumor cells into the tail vein of NOD/SCID mice. The knockdown of NOVA1 had lower tumorigenicity. NOVA1 knockdown alleviated pathological changes in lung and spleen tissues, and increased the overall survival period and the weight of T-ALL mice. Thus, NOVA1 acts as an accelerator in T-ALL, and its function might be achieved by binding to and stabilizing USP44 mRNA.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.