{"title":"High-fructose corn syrup aggravates colitis via microbiota dysbiosis-mediated Th17/Treg imbalance.","authors":"Mingxia Zhou, Xiaoman Liu, Jing He, Xinyu Xu, Chenxi Ju, Shangjian Luo, Xiajuan Lu, Peng Du, Yingwei Chen","doi":"10.1042/CS20230788","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary fructose is widely used in beverages, processed foods, and Western diets as food additives, and is closely related to the increased prevalence of multiple diseases, including inflammatory bowel disease (IBD). However, the detailed mechanism by which high fructose disrupts intestinal homeostasis remains elusive. The present study showed that high-fructose corn syrup (HFCS) administration exacerbated intestinal inflammation and deteriorated barrier integrity. Several in vivo experimental models were utilized to verify the importance of gut microbiota and immune cells in HFCS-mediated dextran sulfate sodium (DSS)-induced colitis. In addition, untargeted metabolomics analysis revealed the imbalance between primary bile acids (PBAs) and secondary bile acids (SBAs) in feces. Hence, high fructose was speculated to modulate gut microbiota community and reduced the relative abundance of Clostridium and Clostridium scindens at genus and species level respectively, followed by a decrease in SBAs, especially isoalloLCA, thereby affecting Th17/Treg cells equilibrium and promoting intestinal inflammation. These findings provide novel insights into the crosstalk between gut flora, bile acids, and mucosal immunity, and highlight potential strategies for precise treatment of IBD.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":"1619-1635"},"PeriodicalIF":6.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20230788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary fructose is widely used in beverages, processed foods, and Western diets as food additives, and is closely related to the increased prevalence of multiple diseases, including inflammatory bowel disease (IBD). However, the detailed mechanism by which high fructose disrupts intestinal homeostasis remains elusive. The present study showed that high-fructose corn syrup (HFCS) administration exacerbated intestinal inflammation and deteriorated barrier integrity. Several in vivo experimental models were utilized to verify the importance of gut microbiota and immune cells in HFCS-mediated dextran sulfate sodium (DSS)-induced colitis. In addition, untargeted metabolomics analysis revealed the imbalance between primary bile acids (PBAs) and secondary bile acids (SBAs) in feces. Hence, high fructose was speculated to modulate gut microbiota community and reduced the relative abundance of Clostridium and Clostridium scindens at genus and species level respectively, followed by a decrease in SBAs, especially isoalloLCA, thereby affecting Th17/Treg cells equilibrium and promoting intestinal inflammation. These findings provide novel insights into the crosstalk between gut flora, bile acids, and mucosal immunity, and highlight potential strategies for precise treatment of IBD.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.