{"title":"Dextran Amine-Conjugated Neural Tracing in Mosquitoes.","authors":"Meg A Younger","doi":"10.1101/pdb.prot108337","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the circuitry of the brain, it is often advantageous to visualize the processes of a single neuron or population of neurons. Identifying sites where a neuron, or neurons, originates and where it projects can allow a researcher to begin to map the circuitry underlying various processes, including sensory-guided behaviors. Furthermore, neural tracing allows one to map locations where processes terminate onto regions of the brain that may have known functions and sometimes to identify candidate upstream or downstream connections, based on proximity. Many methods of neural tracing are available; here, we focus on loading fluorescent dyes into a neuron (fluorescent dye filling). Different options for dyes exist to label neurites. Among the most versatile and easy to use are dextran amine-conjugated dyes. They fill neurons bidirectionally, not discriminating between anterograde or retrograde loading direction. Dye filling must be done in unfixed tissue, as the dye needs to move through the neurons; however, dextran amine conjugates are aldehyde-fixable and once cells have been fully loaded with dye the tissue can be fixed and subjected to immunostaining. Coupling neural tracing with immunofluorescence is a useful way to determine specific brain or ventral nerve cord (VNC) regions where a neuron projects. This protocol describes methods for loading dextran amine conjugated dyes into a sensory tissue in the mosquito to visualize sites of sensory neuron innervation in the central nervous system, as well as efferent projections to these structures. This protocol is described for <i>Aedes aegypti</i>, for which it was optimized, but it also works across a variety of insects.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108337"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the circuitry of the brain, it is often advantageous to visualize the processes of a single neuron or population of neurons. Identifying sites where a neuron, or neurons, originates and where it projects can allow a researcher to begin to map the circuitry underlying various processes, including sensory-guided behaviors. Furthermore, neural tracing allows one to map locations where processes terminate onto regions of the brain that may have known functions and sometimes to identify candidate upstream or downstream connections, based on proximity. Many methods of neural tracing are available; here, we focus on loading fluorescent dyes into a neuron (fluorescent dye filling). Different options for dyes exist to label neurites. Among the most versatile and easy to use are dextran amine-conjugated dyes. They fill neurons bidirectionally, not discriminating between anterograde or retrograde loading direction. Dye filling must be done in unfixed tissue, as the dye needs to move through the neurons; however, dextran amine conjugates are aldehyde-fixable and once cells have been fully loaded with dye the tissue can be fixed and subjected to immunostaining. Coupling neural tracing with immunofluorescence is a useful way to determine specific brain or ventral nerve cord (VNC) regions where a neuron projects. This protocol describes methods for loading dextran amine conjugated dyes into a sensory tissue in the mosquito to visualize sites of sensory neuron innervation in the central nervous system, as well as efferent projections to these structures. This protocol is described for Aedes aegypti, for which it was optimized, but it also works across a variety of insects.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.