Role of the extracellular matrix in Candida biofilm antifungal resistance.

IF 10.1 2区 生物学 Q1 MICROBIOLOGY FEMS microbiology reviews Pub Date : 2023-11-01 DOI:10.1093/femsre/fuad059
Justin Massey, Robert Zarnowski, David Andes
{"title":"Role of the extracellular matrix in Candida biofilm antifungal resistance.","authors":"Justin Massey, Robert Zarnowski, David Andes","doi":"10.1093/femsre/fuad059","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuad059","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞外基质在念珠菌生物膜抗真菌耐药性中的作用。
念珠菌引起的临床感染经常涉及生物膜群落的生长。尽管进行了抗真菌治疗,但顽固性仍会导致与高发病率和死亡率相关的疾病持续存在。念珠菌有几种可以逃避抗真菌作用的工具。其中,通过细胞外基质包裹来保护生物膜细胞是大多数耐药表型的原因。念珠菌基质成分是复杂的,包括与抗真菌药物螯合有关的甘露聚糖-葡聚糖复合物。这种耐药性机制在念珠菌属中是保守的,并影响到每一种可用的抗真菌药物类别。外泌体途径负责念珠菌细胞外基质的递送和组装,作为功能性囊泡蛋白和多糖货物。研究表明,囊泡基质递送途径是一种有用的真菌生物膜药物靶点。进一步阐明囊泡途径,以及了解生物膜驱动货物的作用,可能会为念珠菌生物膜的诊断、预防和治疗提供额外的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
期刊最新文献
Microbial functional diversity and redundancy: moving forward. Microbial adaptive pathogenicity strategies to the host inflammatory environment. Standardizing experimental approaches to investigate interactions between bacteria and ectomycorrhizal fungi. Where the microbes aren't. Charting the microbial frontier: a comprehensive guidebook for advancing microbiome research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1