A Lightweight Pixel-Level Unified Image Fusion Network.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2023-10-11 DOI:10.1109/TNNLS.2023.3311820
Jinyang Liu, Shutao Li, Haibo Liu, Renwei Dian, Xiaohui Wei
{"title":"A Lightweight Pixel-Level Unified Image Fusion Network.","authors":"Jinyang Liu, Shutao Li, Haibo Liu, Renwei Dian, Xiaohui Wei","doi":"10.1109/TNNLS.2023.3311820","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, deep-learning-based pixel-level unified image fusion methods have received more and more attention due to their practicality and robustness. However, they usually require a complex network to achieve more effective fusion, leading to high computational cost. To achieve more efficient and accurate image fusion, a lightweight pixel-level unified image fusion (L-PUIF) network is proposed. Specifically, the information refinement and measurement process are used to extract the gradient and intensity information and enhance the feature extraction capability of the network. In addition, these information are converted into weights to guide the loss function adaptively. Thus, more effective image fusion can be achieved while ensuring the lightweight of the network. Extensive experiments have been conducted on four public image fusion datasets across multimodal fusion, multifocus fusion, and multiexposure fusion. Experimental results show that L-PUIF can achieve better fusion efficiency and has a greater visual effect compared with state-of-the-art methods. In addition, the practicability of L-PUIF in high-level computer vision tasks, i.e., object detection and image segmentation, has been verified.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3311820","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, deep-learning-based pixel-level unified image fusion methods have received more and more attention due to their practicality and robustness. However, they usually require a complex network to achieve more effective fusion, leading to high computational cost. To achieve more efficient and accurate image fusion, a lightweight pixel-level unified image fusion (L-PUIF) network is proposed. Specifically, the information refinement and measurement process are used to extract the gradient and intensity information and enhance the feature extraction capability of the network. In addition, these information are converted into weights to guide the loss function adaptively. Thus, more effective image fusion can be achieved while ensuring the lightweight of the network. Extensive experiments have been conducted on four public image fusion datasets across multimodal fusion, multifocus fusion, and multiexposure fusion. Experimental results show that L-PUIF can achieve better fusion efficiency and has a greater visual effect compared with state-of-the-art methods. In addition, the practicability of L-PUIF in high-level computer vision tasks, i.e., object detection and image segmentation, has been verified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻量级像素级统一图像融合网络。
近年来,基于深度学习的像素级统一图像融合方法因其实用性和鲁棒性而受到越来越多的关注。然而,它们通常需要复杂的网络来实现更有效的融合,从而导致高计算成本。为了实现更高效、更准确的图像融合,提出了一种轻量级的像素级统一图像融合(L-PUIF)网络。具体来说,信息细化和测量过程用于提取梯度和强度信息,增强网络的特征提取能力。此外,这些信息被转换为权重,以自适应地引导损失函数。因此,在确保网络的轻量级的同时,可以实现更有效的图像融合。已经在四个公共图像融合数据集上进行了广泛的实验,包括多模式融合、多焦点融合和多曝光融合。实验结果表明,与现有技术相比,L-PUIF可以获得更好的融合效率和更大的视觉效果。此外,L-PUIF在高级计算机视觉任务,即目标检测和图像分割中的实用性也得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Adaptive Graph Convolutional Network for Unsupervised Generalizable Tabular Representation Learning Gently Sloped and Extended Classification Margin for Overconfidence Relaxation of Out-of-Distribution Samples NNG-Mix: Improving Semi-Supervised Anomaly Detection With Pseudo-Anomaly Generation Alleviate the Impact of Heterogeneity in Network Alignment From Community View Hierarchical Contrastive Learning for Semantic Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1