Natalia Zashikhina, Erik Gandalipov, Apollinariia Dzhuzha, Viktor Korzhikov-Vlakh, Evgenia Korzhikova-Vlakh
{"title":"Dual drug loaded polypeptide delivery systems for cancer therapy.","authors":"Natalia Zashikhina, Erik Gandalipov, Apollinariia Dzhuzha, Viktor Korzhikov-Vlakh, Evgenia Korzhikova-Vlakh","doi":"10.1080/02652048.2023.2270064","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was aimed to prepare and examine <i>in vitro</i> novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-<i>co</i>-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-19"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2270064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.