Dual drug loaded polypeptide delivery systems for cancer therapy.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2023-10-12 DOI:10.1080/02652048.2023.2270064
Natalia Zashikhina, Erik Gandalipov, Apollinariia Dzhuzha, Viktor Korzhikov-Vlakh, Evgenia Korzhikova-Vlakh
{"title":"Dual drug loaded polypeptide delivery systems for cancer therapy.","authors":"Natalia Zashikhina,&nbsp;Erik Gandalipov,&nbsp;Apollinariia Dzhuzha,&nbsp;Viktor Korzhikov-Vlakh,&nbsp;Evgenia Korzhikova-Vlakh","doi":"10.1080/02652048.2023.2270064","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was aimed to prepare and examine <i>in vitro</i> novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-<i>co</i>-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-19"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2270064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症治疗的双载药多肽递送系统。
本研究旨在制备和检测新型双载药递送系统。以聚(L-谷氨酸-co-D-苯丙氨酸)为基础的可生物降解纳米颗粒为纳米载体,包封了紫杉醇、伊立替康和阿霉素系列的两种药物。所开发的输送系统的流体动力学直径小于300 nm(PDI<0.3)。所有单药和双药制剂都实现了高封装效率(≥75%)。释放研究表明,在酸性pH下释放更快,释放速率随着时间的推移而降低。共包封形式的物质的释放模式与单独包封的药物的释放模式不同,这表明药物-聚合物相互作用存在差异。使用癌症结肠癌细胞分析了胶囊药物的联合作用,这两种药物都是单药和双药配方的混合物。药物组合的包封形式表现出与游离形式相当的疗效,包封增强了疏水性药物紫杉醇的溶解度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Lipid nanocarrier-based bigel of Piper betel oil for analgesic and anti-inflammatory applications. Recent updates of carotenoid encapsulation by spray-drying technique. Physicochemical stability and controlled release of vitamin D3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. Spray-dried chitosan oligosaccharide microparticles with polyvinyl alcohol-based dispersions for improved gefitinib solubility. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1