Effects of µ-Conotoxin GIIIB on the cellular activity of mouse skeletal musculoblast: combined transcriptome and proteome analysis.

IF 2.1 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Proteome Science Pub Date : 2023-10-12 DOI:10.1186/s12953-023-00221-w
Han-Xi Wu, Pei-Min He, Rui Jia
{"title":"Effects of µ-Conotoxin GIIIB on the cellular activity of mouse skeletal musculoblast: combined transcriptome and proteome analysis.","authors":"Han-Xi Wu, Pei-Min He, Rui Jia","doi":"10.1186/s12953-023-00221-w","DOIUrl":null,"url":null,"abstract":"<p><p>µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"17"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-023-00221-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
µ-锥虫毒素GIIIB对小鼠骨骼肌成纤维细胞细胞活性的影响:转录组和蛋白质组的联合分析。
µ-锥虫毒素GIIIB(µ-CTX-GIIB)是一种含有三个二硫键的多肽,由地理锥虫产生。本研究旨在探讨µ-CTX-GIIB对小鼠骨骼肌成纤维细胞(Sol8)的细胞毒性作用。将Sol8细胞暴露于哇巴因和veratridine以建立细胞损伤模型,然后用µ-CTX-GIIB处理。采用CCK-8评价µ-CTX-GIIB的细胞毒性。然后,进行蛋白质组学和转录组学研究,发现了受µ-CTX-GIIB影响的差异表达基因(DEGs)和差异表达蛋白(DEPs)。使用基因本体论(GO)和京都基因和基因组百科全书(KEGG)分析来研究受影响的信号通路。µ-CTX GIIIB提高了受损Sol8细胞的细胞存活率。我们发现并鉴定了1663个DEG和444个DEP受到µ-CTX-GIIB的影响。通过结合转录组和蛋白质组数据选择了106对相关的DEG和DEP。KEGG和GO分析结果表明,µ-CTX-GIB影响Sol8细胞的细胞周期、细胞凋亡、DNA损伤和修复、脂质代谢等生物学过程。µ-CTX-GIIB可能影响细胞周期调节、DNA损伤修复和肿瘤因子的激活,具有潜在的致癌作用。我们的研究结果为研究µ-CTX-GIIB的体外毒性、毒性机制和损伤预防提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteome Science
Proteome Science 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
4.5 months
期刊介绍: Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context. Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics. In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.
期刊最新文献
Metabolism-related proteins as biomarkers for predicting prognosis in polycystic ovary syndrome. LC-MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages. Identification of mRNA biomarkers in extremely early hypertensive intracerebral hemorrhage (HICH). Multi-targeted olink proteomics analyses of cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage. Genome-wide computational analysis of the dirigent gene family in Solanum lycopersicum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1