{"title":"Effects of µ-Conotoxin GIIIB on the cellular activity of mouse skeletal musculoblast: combined transcriptome and proteome analysis.","authors":"Han-Xi Wu, Pei-Min He, Rui Jia","doi":"10.1186/s12953-023-00221-w","DOIUrl":null,"url":null,"abstract":"<p><p>µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"17"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-023-00221-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.
期刊介绍:
Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context.
Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics.
In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.