Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation.
Ting Zhou, Yurong Yan, Chenchen Zhao, Yao Xu, Qiong Wang, Na Xu
{"title":"Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production <i>via</i> AMPK activation.","authors":"Ting Zhou, Yurong Yan, Chenchen Zhao, Yao Xu, Qiong Wang, Na Xu","doi":"10.1080/13510002.2019.1658376","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Resveratrol has been confirmed to improve bone quality and delay osteoporosis, but the mechanisms have not been thoroughly elucidated. In this report, we investigated the osteogenic differentiation effect of resveratrol on senescent bone mesenchymal stem cells (BMSCs) and the involvement of AMP-activated protein kinase (AMPK)/ reactive oxygen species (ROS) signaling pathway. <b>Methods:</b> Cell senescence, viability, and osteogenic differentiation of BMSCs influenced by resveratrol were investigated and ROS production and AMPK expression were detected. <b>Results:</b> Cell senescence, characterized by senescence β-galactosidase staining and senescence-related genes (p16, p21, and p53) expression, was attenuated by resveratrol. Cell viability, extracellular matrix calcification, and osteogenic-related genes expression were significantly enhanced after resveratrol treatment. ROS production in BMSCs was inhibited while AMPK expression was up-regulated by resveratrol. Inhibition of AMPK expression by compound C reduced resveratrol-prompted osteogenesis and ROS production down-regulation. <b>Conclusion:</b> These results provide a potential mechanism involving AMPK activation/ROS inhibition signaling pathway in osteogenic differentiation of BMSCs enhanced by resveratrol. It suggests that development of therapy towards ROS is an effective way for osteoporosis treatment.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"24 1","pages":"62-69"},"PeriodicalIF":5.2000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13510002.2019.1658376","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2019.1658376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 51
Abstract
Objective: Resveratrol has been confirmed to improve bone quality and delay osteoporosis, but the mechanisms have not been thoroughly elucidated. In this report, we investigated the osteogenic differentiation effect of resveratrol on senescent bone mesenchymal stem cells (BMSCs) and the involvement of AMP-activated protein kinase (AMPK)/ reactive oxygen species (ROS) signaling pathway. Methods: Cell senescence, viability, and osteogenic differentiation of BMSCs influenced by resveratrol were investigated and ROS production and AMPK expression were detected. Results: Cell senescence, characterized by senescence β-galactosidase staining and senescence-related genes (p16, p21, and p53) expression, was attenuated by resveratrol. Cell viability, extracellular matrix calcification, and osteogenic-related genes expression were significantly enhanced after resveratrol treatment. ROS production in BMSCs was inhibited while AMPK expression was up-regulated by resveratrol. Inhibition of AMPK expression by compound C reduced resveratrol-prompted osteogenesis and ROS production down-regulation. Conclusion: These results provide a potential mechanism involving AMPK activation/ROS inhibition signaling pathway in osteogenic differentiation of BMSCs enhanced by resveratrol. It suggests that development of therapy towards ROS is an effective way for osteoporosis treatment.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.