{"title":"On the estimation of hip joint centre location with incomplete bone ossification for foetus-specific neuromusculoskeletal modeling.","authors":"Morgane Ferrandini, Tien-Tuan Dao","doi":"10.1080/10255842.2023.2269285","DOIUrl":null,"url":null,"abstract":"<p><p>Childbirth is a complex physiological process in which a foetal neuromusculoskeletal model is of great importance to develop realistic delivery simulations and associated complication analyses. However, the estimation of hip joint centre (HJC) in foetuses remains a challenging issue. Thus, this paper aims to propose and evaluate a new approach to locate the HJC in foetuses. Hip CT-scans from 25 children (<i>F</i> = 11, age = 5.5 ± 2.6 years, height = 117 ± 21 cm, mass = 26 kg ± 9.5 kg) were used to propose and evaluate the novel acetabulum sphere fitting process to locate the HJC. This new approach using the acetabulum surface was applied to a population of 57 post-mortem foetal CT scans to locate the HJC as well as to determine associated regression equations using multiple linear regression. As results, the average distance between the HJC located using acetabulum sphere fitting and femoral head sphere fitting in children was 1.5 ± 0.7 mm. The average prediction error using our developed foetal HJC regression equations was 3.0 ± 1.5 mm, even though the equation for the x coordinate had a poor value of R<sup>2</sup> (R<sup>2</sup> for the x coordinate = 0.488). The present study suggests that the use of the acetabulum sphere fitting approach is a valid and accurate method to locate the HJC in children, and then can be extrapolated to get an estimation of the HJC in foetuses with incomplete bone ossification. Therefore, the present paper can be used as a guideline for foetus specific neuromusculoskeletal modelling.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1984-1998"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2269285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Childbirth is a complex physiological process in which a foetal neuromusculoskeletal model is of great importance to develop realistic delivery simulations and associated complication analyses. However, the estimation of hip joint centre (HJC) in foetuses remains a challenging issue. Thus, this paper aims to propose and evaluate a new approach to locate the HJC in foetuses. Hip CT-scans from 25 children (F = 11, age = 5.5 ± 2.6 years, height = 117 ± 21 cm, mass = 26 kg ± 9.5 kg) were used to propose and evaluate the novel acetabulum sphere fitting process to locate the HJC. This new approach using the acetabulum surface was applied to a population of 57 post-mortem foetal CT scans to locate the HJC as well as to determine associated regression equations using multiple linear regression. As results, the average distance between the HJC located using acetabulum sphere fitting and femoral head sphere fitting in children was 1.5 ± 0.7 mm. The average prediction error using our developed foetal HJC regression equations was 3.0 ± 1.5 mm, even though the equation for the x coordinate had a poor value of R2 (R2 for the x coordinate = 0.488). The present study suggests that the use of the acetabulum sphere fitting approach is a valid and accurate method to locate the HJC in children, and then can be extrapolated to get an estimation of the HJC in foetuses with incomplete bone ossification. Therefore, the present paper can be used as a guideline for foetus specific neuromusculoskeletal modelling.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.