Cato M Milder, Sara C Howard, Elizabeth D Ellis, Ashley P Golden, Sarah S Cohen, Michael T Mumma, Richard W Leggett, Benjamin French, Lydia B Zablotska, John D Boice
{"title":"Third mortality follow-up of the Mallinckrodt uranium processing workers, 1942-2019.","authors":"Cato M Milder, Sara C Howard, Elizabeth D Ellis, Ashley P Golden, Sarah S Cohen, Michael T Mumma, Richard W Leggett, Benjamin French, Lydia B Zablotska, John D Boice","doi":"10.1080/09553002.2023.2267640","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust.</p><p><strong>Materials and methods: </strong>Individual, annualized organ doses were estimated from film badge records (<i>n</i> monitored = 2514), occupational chest x-rays (<i>n</i> = 2514), uranium urinalysis (<i>n</i> = 1868), radium intake through radon breath measurements (<i>n</i> = 487), and radon ambient measurements (<i>n</i> = 1356). Silica dust exposure from pitchblende processing was estimated (<i>n</i> = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models.</p><p><strong>Results: </strong>Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m<sup>3</sup>-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m<sup>3</sup>-year.</p><p><strong>Conclusions: </strong>This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m<sup>3</sup>-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"161-175"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2267640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust.
Materials and methods: Individual, annualized organ doses were estimated from film badge records (n monitored = 2514), occupational chest x-rays (n = 2514), uranium urinalysis (n = 1868), radium intake through radon breath measurements (n = 487), and radon ambient measurements (n = 1356). Silica dust exposure from pitchblende processing was estimated (n = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models.
Results: Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m3-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m3-year.
Conclusions: This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m3-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.