Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands.

Stem cells and development Pub Date : 2023-12-01 Epub Date: 2023-11-16 DOI:10.1089/scd.2023.0125
Jingming Liu, Yanan Li, Yuxin Zhang, Qianyu Cheng, Huikai Liu, Liwen He, Liang Chen, Tianyu Zhao, Panpan Liang, Wenping Luo
{"title":"Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands.","authors":"Jingming Liu, Yanan Li, Yuxin Zhang, Qianyu Cheng, Huikai Liu, Liwen He, Liang Chen, Tianyu Zhao, Panpan Liang, Wenping Luo","doi":"10.1089/scd.2023.0125","DOIUrl":null,"url":null,"abstract":"<p><p>The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that <i>Agt</i> is a specific marker of SMG serous acinar cells, whereas <i>Gal</i> is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that <i>Agt</i> and <i>Gal</i> represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2023.0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞RNA-seq分析确定血管紧张素原和甘丙肽是小鼠唾液腺腺泡细胞的独特分子标记。
下颌下腺(SMG)和舌下腺(SLG)是哺乳动物三大唾液腺中的两个,由浆液性和粘液性腺泡细胞组成。这两个腺体有一些共同的功能特性,这些特性在很大程度上取决于腺泡细胞的类型。近年来,尽管具有10×平台的ScRNA-seq(单细胞测序)已被用于探索唾液腺中的分子标记,但很少有研究检测SMG和SLG之间的腺泡异质性和独特的分子标记。本研究旨在鉴定SLG和SMG腺泡细胞的分子标记。我们对4周龄(W)的小鼠进行了ScRNA-seq分析,并使用RT-qPCR、免疫组织化学和免疫荧光验证了筛选的分子标记。我们的结果显示,尽管在4W时两个腺体之间的簇组成非常相似,但腺泡细胞具有显著的异质性。此外,我们证明了Agt是SMG浆液性腺泡细胞的特异性标记,而Gal是SLG粘液性腺泡细胞的特异性标志。轨迹推断显示,Agt和Gal代表了成人发育后期两种不同类型的腺泡细胞簇。因此,我们揭示了唾液腺泡细胞多样性的先前未知的特异性标志物,这对其进一步的功能研究具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in Organoid Culture Technologies: Current Trends and Innovations. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Development of Mesenchymal Stem Cell Encoded with Myogenic Gene for Treating Radiation-Induced Muscle Fibrosis. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1