3D printing-based full-scale human brain for diverse applications

Brain-X Pub Date : 2023-04-05 DOI:10.1002/brx2.5
Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Lai Wen, Ying Yang, Danyang Zhao, Shu Liu, Yifei Jin
{"title":"3D printing-based full-scale human brain for diverse applications","authors":"Weijian Hua,&nbsp;Cheng Zhang,&nbsp;Lily Raymond,&nbsp;Kellen Mitchell,&nbsp;Lai Wen,&nbsp;Ying Yang,&nbsp;Danyang Zhao,&nbsp;Shu Liu,&nbsp;Yifei Jin","doi":"10.1002/brx2.5","DOIUrl":null,"url":null,"abstract":"<p>Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called “peeling-boiled-eggs,” is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called “peeling-boiled-eggs,” is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于3D打印的全尺寸人脑,适用于各种应用。
手术是脑肿瘤患者最常见的治疗方法。通过目前的制造技术,全尺寸人脑模型的构建仍然具有挑战性,可以在脑瘤手术前有效地培训外科医生。本文旨在开发一套三维(3D)打印方法,以制作用于手术训练的定制全尺寸人脑模型,以及用于术后伤口愈合的专用脑补片。首先,设计用于适应伤口形状和大小的脑补片可以很容易地打印出来,并从刺激反应性屈服-压力支持浴中收集。然后,提出了一种反向3D打印策略,称为“剥煮鸡蛋”,以制造全尺寸的人脑模型。在这种策略中,使用牺牲墨水打印大脑模型的轮廓层,以将目标大脑核心包裹在光固化屈服应力支撑浴中。在交联轮廓层之后,可以从浴中获得打印好的模型,以光交联脑核心,最终可以通过液化轮廓层来释放脑核心。大脑贴片和全尺寸人脑模型都被成功打印出来,以模拟切除脑瘤后伤口愈合的场景,验证了所提出的3D打印方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Research progress and applications of optoelectronic synaptic devices based on 2D materials Mechanosensitive Piezo channels and their potential roles in peripheral auditory perception Brain perfusion alterations in patients and survivors of COVID-19 infection using arterial spin labeling: A systematic review Microbiome-gut-brain axis as a novel hotspot in depression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1