Evaluation of fuller's earth clay ceramic membrane in treating raw rubber-processing wastewater

IF 1.2 4区 化学 Q4 POLYMER SCIENCE Journal of Rubber Research Pub Date : 2023-07-12 DOI:10.1007/s42464-023-00212-8
S. Lakshmi Sandhya Rani, K. V. V. Satyannarayana, R. Vinoth Kumar
{"title":"Evaluation of fuller's earth clay ceramic membrane in treating raw rubber-processing wastewater","authors":"S. Lakshmi Sandhya Rani,&nbsp;K. V. V. Satyannarayana,&nbsp;R. Vinoth Kumar","doi":"10.1007/s42464-023-00212-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ceramic membranes are considered more effective for wastewater treatment applications than polymeric membranes because of their excellent resistance to thermal and chemical environments and possess high durability. To avoid the high cost of commercial ceramic membranes, recently, a significant improvement has been accomplished in developing them using low-cost alternative materials and their application in wastewater treatment. This study investigated the performance of an innovative ceramic microfiltration (MF) membrane fabricated with inexpensive Fuller's earth clay in treating the natural raw rubber (ribbed smoked sheet)-processing wastewater. The flat sheet low-cost membrane used in this study was prepared by uniaxial dry pressing route, followed by sintering at 850 °C, and it possessed 39% porosity with 0.176 µm pore size. The wastewater was treated in dead-end filtration mode at different pressures varying from 0.35 to 2 bar and observed the percentage removal of COD, turbidity, and total suspended solids (TSS). Untreated wastewater had a turbidity of 150 NTU, 1200 mg/L TSS, and 10,800 mg/L COD. At a low operating pressure of 0.35 bar, 94% removal of turbidity and total suspended solids was obtained. Also, significant COD removal of 70.4% from wastewater was obtained using the prepared low-cost MF membrane. Finally, the fouling phenomenon during the wastewater treatment was analyzed and it was concluded that it followed the cake filtration model. For future work, cross-flow filtration of wastewater using fabricated Fuller's earth clay ceramic membrane is recommended as it could pave the way forward towards commercialization and wide-scale industrial applications.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 3","pages":"205 - 219"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00212-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic membranes are considered more effective for wastewater treatment applications than polymeric membranes because of their excellent resistance to thermal and chemical environments and possess high durability. To avoid the high cost of commercial ceramic membranes, recently, a significant improvement has been accomplished in developing them using low-cost alternative materials and their application in wastewater treatment. This study investigated the performance of an innovative ceramic microfiltration (MF) membrane fabricated with inexpensive Fuller's earth clay in treating the natural raw rubber (ribbed smoked sheet)-processing wastewater. The flat sheet low-cost membrane used in this study was prepared by uniaxial dry pressing route, followed by sintering at 850 °C, and it possessed 39% porosity with 0.176 µm pore size. The wastewater was treated in dead-end filtration mode at different pressures varying from 0.35 to 2 bar and observed the percentage removal of COD, turbidity, and total suspended solids (TSS). Untreated wastewater had a turbidity of 150 NTU, 1200 mg/L TSS, and 10,800 mg/L COD. At a low operating pressure of 0.35 bar, 94% removal of turbidity and total suspended solids was obtained. Also, significant COD removal of 70.4% from wastewater was obtained using the prepared low-cost MF membrane. Finally, the fouling phenomenon during the wastewater treatment was analyzed and it was concluded that it followed the cake filtration model. For future work, cross-flow filtration of wastewater using fabricated Fuller's earth clay ceramic membrane is recommended as it could pave the way forward towards commercialization and wide-scale industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富勒粘土陶瓷膜处理生胶加工废水的评价
陶瓷膜被认为比聚合物膜更有效地用于废水处理应用,因为它们具有优异的耐热性和化学环境,并且具有高耐久性。为了避免商业陶瓷膜的高成本,最近,在使用低成本的替代材料开发陶瓷膜及其在废水处理中的应用方面取得了重大进展。本研究考察了用廉价的富勒粘土制备的新型陶瓷微滤膜处理天然生橡胶(罗纹烟板)加工废水的性能。本研究中使用的平板低成本膜是通过单轴干法压制路线制备的,然后在850°C下烧结,其孔隙率为39%,孔径为0.176µm。废水在0.35至2巴的不同压力下以死端过滤模式处理,并观察COD、浊度和总悬浮固体(TSS)的去除率。未经处理的废水的浊度为150 NTU,TSS为1200 mg/L,COD为10800 mg/L。在0.35巴的低操作压力下,获得了94%的浊度和总悬浮固体的去除。此外,使用所制备的低成本MF膜,废水中的COD去除率达到70.4%。最后,对污水处理过程中的结垢现象进行了分析,得出其符合滤饼过滤模型的结论。对于未来的工作,建议使用制造的富勒粘土陶瓷膜对废水进行错流过滤,因为它可以为商业化和大规模工业应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rubber Research
Journal of Rubber Research 化学-高分子科学
自引率
15.40%
发文量
46
审稿时长
3 months
期刊介绍: The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science. The Journal of Rubber Research welcomes research on: the upstream, including crop management, crop improvement and protection, and biotechnology; the midstream, including processing and effluent management; the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory; economics, including the economics of rubber production, consumption, and market analysis. The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines. Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.
期刊最新文献
Studying the effect of untreated and treated rice straw on different properties of carbon black filled styrene-butadiene rubber composites Effects of oil palm trunk biochar as filler on physical and mechanical properties of deproteinised and epoxidised natural rubber latex foam Application of bio-based vegetable oils as processing aids in industrial natural rubber composites Mechanical, thermal, and sorption behaviours of polyurethane rich footwear waste-clay reinforced natural rubber Preparation of SiO2 solvent-free nanofluids for modification of commercial corrosion-resistant coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1