Experimental Analysis of the Mechanical Properties of Austenitic S30408 Stainless Steel Welded Joints at Low Temperatures

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2023-07-21 DOI:10.1007/s13296-023-00765-9
Hongbo Liu, Longxuan Wang, Yixin Yang, Ting Zhou, Jing Li
{"title":"Experimental Analysis of the Mechanical Properties of Austenitic S30408 Stainless Steel Welded Joints at Low Temperatures","authors":"Hongbo Liu,&nbsp;Longxuan Wang,&nbsp;Yixin Yang,&nbsp;Ting Zhou,&nbsp;Jing Li","doi":"10.1007/s13296-023-00765-9","DOIUrl":null,"url":null,"abstract":"<div><p>Austenitic S30408 stainless steel exhibits good low-temperature resistance and good welding performance. This steel is often used in liquefied natural gas stainless steel storage tanks. During the construction process, the tank wall is primarily connected by butt weld joints. Because welded joints are easily affected by temperature, low-temperature weld cracking can reduce the safety of structures. To study the cryogenic mechanical properties of austenitic S30408 stainless steel welded joints at low temperatures, the low-temperature mechanical properties of austenitic S30408 stainless steel base metal and welded joint components were studied by tensile tests from − 60 to 20 °C and scanning electron microscopy analysis of fractures at various temperatures. The results show that when the temperature decreases, the stress–strain curve of base metal components changes from a power function type to an inverted \"s\" type; in addition, secondary hardening occurs. The yield strength and tensile strength of the welded joint and base metal increased with decreasing temperature, and the elongation and reduction of area decreased. The plastic deformation capacity of the welded joint was significantly lower than that of the base metal, and there were obvious inclusions in the microstructure.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-023-00765-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Austenitic S30408 stainless steel exhibits good low-temperature resistance and good welding performance. This steel is often used in liquefied natural gas stainless steel storage tanks. During the construction process, the tank wall is primarily connected by butt weld joints. Because welded joints are easily affected by temperature, low-temperature weld cracking can reduce the safety of structures. To study the cryogenic mechanical properties of austenitic S30408 stainless steel welded joints at low temperatures, the low-temperature mechanical properties of austenitic S30408 stainless steel base metal and welded joint components were studied by tensile tests from − 60 to 20 °C and scanning electron microscopy analysis of fractures at various temperatures. The results show that when the temperature decreases, the stress–strain curve of base metal components changes from a power function type to an inverted "s" type; in addition, secondary hardening occurs. The yield strength and tensile strength of the welded joint and base metal increased with decreasing temperature, and the elongation and reduction of area decreased. The plastic deformation capacity of the welded joint was significantly lower than that of the base metal, and there were obvious inclusions in the microstructure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奥氏体S30408不锈钢焊接接头低温力学性能的试验分析
奥氏体S30408不锈钢具有良好的耐低温性和良好的焊接性能。这种钢通常用于液化天然气不锈钢储罐。在施工过程中,罐壁主要通过对接焊缝连接。由于焊接接头容易受到温度的影响,低温焊缝开裂会降低结构的安全性。为了研究奥氏体S30408不锈钢焊接接头在低温下的低温力学性能,从 − 60至20°C,并对不同温度下的断裂进行扫描电子显微镜分析。结果表明,当温度降低时,基底金属构件的应力-应变曲线由幂函数型变为倒s型;此外,还会发生二次硬化。焊接接头和母材的屈服强度和抗拉强度随着温度的降低而增加,伸长率和面积减少。焊接接头的塑性变形能力明显低于母材,组织中存在明显的夹杂物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Global Response Reconstruction of a Full-Scale 3D Structure Model Using Limited Multi-Response Data Stress Concentration Around Cutouts in Spirally Welded Steel Columns Experimental Investigation of the Effect of Welding Parameters on Material Properties of SS 316L Stainless Steel Welded Joints Experimental and Analytical Study on the Seismic Performance of PEC T-Shaped Columns Assembled Frames with ALC Open-Hole Wall A Parametric Investigation on Ultra-low Cycle Fatigue Damage of Steel Bridge Piers Under Horizontal Bi-directional Seismic Excitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1