Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li, Hailei Zhao
{"title":"Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping","authors":"Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li, Hailei Zhao","doi":"10.1007/s12613-023-2666-x","DOIUrl":null,"url":null,"abstract":"<div><p>Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>F (NVPOF) has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability. However, the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application. Herein, Nb-doped Na<sub>3</sub>V<sub>2−<i>x</i></sub>Nb<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>F/graphene (rGO) composites (<i>x</i> = 0, 0.05, 0.1) were prepared using a solvothermal method followed by calcination. Compared to the un-doped NVPOF/rGO, doping V-site with high-valence Nb element (Nb<sup>5+</sup>) (Na<sub>3</sub>V<sub>1.95</sub>Nb<sub>0.05</sub>(PO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>F/rGO (NVN05POF/rGO)) can result in the generated V<sup>4+</sup>/V<sup>3+</sup> mixed-valence, ensuring the lower bandgap and thus the increased intrinsic electronic conductivity. Besides, the expanded lattice space favors the Na<sup>+</sup> migration. With the structure feature where NVN05POF particles are attached to the rGO sheets, the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network. As a consequence, the as-prepared NVN05POF/rGO sample exhibits a high specific capacity of ∼72 mAh·g<sup>−1</sup> at 10C (capacity retention of 65.2% (vs. 0.5C)) and excellent long-term cycling stability with the capacity fading rate of ∼0.099% per cycle in 500 cycles at 5C.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 10","pages":"1859 - 1867"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2666-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Na3V2(PO4)2O2F (NVPOF) has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability. However, the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application. Herein, Nb-doped Na3V2−xNbx(PO4)2O2F/graphene (rGO) composites (x = 0, 0.05, 0.1) were prepared using a solvothermal method followed by calcination. Compared to the un-doped NVPOF/rGO, doping V-site with high-valence Nb element (Nb5+) (Na3V1.95Nb0.05(PO4)2O2F/rGO (NVN05POF/rGO)) can result in the generated V4+/V3+ mixed-valence, ensuring the lower bandgap and thus the increased intrinsic electronic conductivity. Besides, the expanded lattice space favors the Na+ migration. With the structure feature where NVN05POF particles are attached to the rGO sheets, the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network. As a consequence, the as-prepared NVN05POF/rGO sample exhibits a high specific capacity of ∼72 mAh·g−1 at 10C (capacity retention of 65.2% (vs. 0.5C)) and excellent long-term cycling stability with the capacity fading rate of ∼0.099% per cycle in 500 cycles at 5C.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.