{"title":"Penehyclidine Hydrochloride Improves Rhabdomyolysis-Mediated Acute Kidney Injury by Inhibiting Ferroptosis through the HIF-1α/MT1G Axis.","authors":"Li Chen, ShaSha Luo, HongBao Tan","doi":"10.1159/000534393","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Penehyclidine hydrochloride (PHC) has been shown to be effective in the treatment of rhabdomyolysis (RM)-induced acute kidney injury (AKI). Our research sought to investigate the pharmacological effects and mechanisms of PHC on RM-induced AKI.</p><p><strong>Methods: </strong>RM-induced AKI models were established by FeG treatment and glycerol injection. Cell viability was analyzed by cell counting kit-8 assay. Reactive oxygen species (ROS) levels were examined by flow cytometry. The LDH, Fe2+, MPO, MDA, and GSH levels were measured using the corresponding kits. The interaction between HIF-1α and MT1G was analyzed by dual-luciferase reporter gene and chromatin immunoprecipitation assays. The kidney pathological alterations were examined by hematoxylin-eosin staining. The levels of serum creatinine, uric acid, and blood urea nitrogen were examined using ELISA. Ferroptosis-related proteins (SLC7A11, GPX4, and ACSL4) were analyzed by Western blot.</p><p><strong>Results: </strong>PHC administration increased FeG-treated HK-2 cell viability, reduced ROS, LDH, Fe2+, MPO, MDA, and ACSL4 levels, and raised GSH, SLC7A11, and GPX4 levels in cells, suggesting that PHC improved FeG-induced HK-2 cell ferroptosis and injury. PHC protected against AKI primarily by suppressing ferroptosis. HIF-1α blocked the SLC7A11/GPX4 pathway by transcriptionally activating MT1G. PHC alleviated glycerol-induced kidney injury in rats by inhibiting ferroptosis.</p><p><strong>Conclusion: </strong>PHC improved RM-mediated AKI by inhibiting ferroptosis through the HIF-1α/MT1G/SLC7A11/GPX4 axis.</p>","PeriodicalId":18998,"journal":{"name":"Nephron","volume":" ","pages":"333-344"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Penehyclidine hydrochloride (PHC) has been shown to be effective in the treatment of rhabdomyolysis (RM)-induced acute kidney injury (AKI). Our research sought to investigate the pharmacological effects and mechanisms of PHC on RM-induced AKI.
Methods: RM-induced AKI models were established by FeG treatment and glycerol injection. Cell viability was analyzed by cell counting kit-8 assay. Reactive oxygen species (ROS) levels were examined by flow cytometry. The LDH, Fe2+, MPO, MDA, and GSH levels were measured using the corresponding kits. The interaction between HIF-1α and MT1G was analyzed by dual-luciferase reporter gene and chromatin immunoprecipitation assays. The kidney pathological alterations were examined by hematoxylin-eosin staining. The levels of serum creatinine, uric acid, and blood urea nitrogen were examined using ELISA. Ferroptosis-related proteins (SLC7A11, GPX4, and ACSL4) were analyzed by Western blot.
Results: PHC administration increased FeG-treated HK-2 cell viability, reduced ROS, LDH, Fe2+, MPO, MDA, and ACSL4 levels, and raised GSH, SLC7A11, and GPX4 levels in cells, suggesting that PHC improved FeG-induced HK-2 cell ferroptosis and injury. PHC protected against AKI primarily by suppressing ferroptosis. HIF-1α blocked the SLC7A11/GPX4 pathway by transcriptionally activating MT1G. PHC alleviated glycerol-induced kidney injury in rats by inhibiting ferroptosis.
Conclusion: PHC improved RM-mediated AKI by inhibiting ferroptosis through the HIF-1α/MT1G/SLC7A11/GPX4 axis.
期刊介绍:
''Nephron'' comprises three sections, which are each under the editorship of internationally recognized leaders and served by specialized Associate Editors. Apart from high-quality original research, ''Nephron'' publishes invited reviews/minireviews on up-to-date topics. Papers undergo an innovative and transparent peer review process encompassing a Presentation Report which assesses and summarizes the presentation of the paper in an unbiased and standardized way.