Narges Rajaei, Ghazaleh Rahgouy, Nasrin Panahi, Nima Razzaghi-Asl
{"title":"Bioinformatic analysis of highly consumed phytochemicals as P-gp binders to overcome drug-resistance.","authors":"Narges Rajaei, Ghazaleh Rahgouy, Nasrin Panahi, Nima Razzaghi-Asl","doi":"10.4103/1735-5362.383706","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>P-glycoprotein (P-gp) is an adenosine triphosphate (ATP)-dependent membrane efflux pump for protecting cells against xenobiotic compounds. Unfortunately, overexpressed P-gp in neoplastic cells prevents cell entry of numerous chemotherapeutic agents leading to multidrug resistance (MDR). MDR cells may be re-sensitized to chemotherapeutic drugs <i>via</i> P-gp inhibition/modulation. Side effects of synthetic P-gp inhibitors encouraged the development of natural products.</p><p><strong>Experimental approach: </strong>Molecular docking and density functional theory (DFT) calculations were used as fast and accurate computational methods to explore a structure binding relationship of some dietary phytochemicals inside distinctive P-gp binding sites (modulatory/inhibitory). For this purpose, top-scored docked conformations were subjected to per-residue energy decomposition analysis in the B3LYP level of theory with a 6-31g (d, p) basis set by Gaussian98 package.</p><p><strong>Findings/results: </strong>Consecutive application of computational techniques revealed binding modes/affinities of nutritive phytochemicals within dominant binding sites of P-gp. Blind docking scores for best-ranked compounds were superior to verapamil and rhodamine-123. Pairwise amino acid decomposition of superior docked conformations revealed Tyr303 as an important P-gp binding residue. DFT-based induced polarization analysis revealed major electrostatic fluctuations at the atomistic level and confirmed larger effects for amino acids with energy-favored binding interactions. Conformational analysis exhibited that auraptene and 7,4',7'',4'''-tetra-<i>O</i>-methylamentoflavone might not necessarily interact to P-gp binding sites through minimum energy conformations.</p><p><strong>Conclusion and implications: </strong>Although there are still many hurdles to overcome, obtained results may propose a few nutritive phytochemicals as potential P-gp binding agents. Moreover; top-scored derivatives may have the chance to exhibit tumor chemo-sensitizing effects.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"18 5","pages":"505-516"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4f/74/RPS-18-505.PMC10568960.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/1735-5362.383706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: P-glycoprotein (P-gp) is an adenosine triphosphate (ATP)-dependent membrane efflux pump for protecting cells against xenobiotic compounds. Unfortunately, overexpressed P-gp in neoplastic cells prevents cell entry of numerous chemotherapeutic agents leading to multidrug resistance (MDR). MDR cells may be re-sensitized to chemotherapeutic drugs via P-gp inhibition/modulation. Side effects of synthetic P-gp inhibitors encouraged the development of natural products.
Experimental approach: Molecular docking and density functional theory (DFT) calculations were used as fast and accurate computational methods to explore a structure binding relationship of some dietary phytochemicals inside distinctive P-gp binding sites (modulatory/inhibitory). For this purpose, top-scored docked conformations were subjected to per-residue energy decomposition analysis in the B3LYP level of theory with a 6-31g (d, p) basis set by Gaussian98 package.
Findings/results: Consecutive application of computational techniques revealed binding modes/affinities of nutritive phytochemicals within dominant binding sites of P-gp. Blind docking scores for best-ranked compounds were superior to verapamil and rhodamine-123. Pairwise amino acid decomposition of superior docked conformations revealed Tyr303 as an important P-gp binding residue. DFT-based induced polarization analysis revealed major electrostatic fluctuations at the atomistic level and confirmed larger effects for amino acids with energy-favored binding interactions. Conformational analysis exhibited that auraptene and 7,4',7'',4'''-tetra-O-methylamentoflavone might not necessarily interact to P-gp binding sites through minimum energy conformations.
Conclusion and implications: Although there are still many hurdles to overcome, obtained results may propose a few nutritive phytochemicals as potential P-gp binding agents. Moreover; top-scored derivatives may have the chance to exhibit tumor chemo-sensitizing effects.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).