Generation and validation of a myoglobin knockout zebrafish model.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI:10.1007/s11248-023-00369-3
Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig
{"title":"Generation and validation of a myoglobin knockout zebrafish model.","authors":"Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig","doi":"10.1007/s11248-023-00369-3","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00369-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌红蛋白敲除斑马鱼模型的产生和验证。
先前使用肌红蛋白(Mb)敲除小鼠和敲除斑马鱼的研究对这种保守和高表达蛋白的缺失导致的体内表型提出了相互矛盾的结果,因此有必要建立一种新的特征明确的敲除模型。我们在这里描述了使用CRISPR/Cas系统产生三个不同的斑马鱼mb敲除系。三个品系在胚胎和幼虫发育过程中都没有表现出任何形态表型、长度变化或致死性。成年纯合敲除mb(Auzf13.2)斑马鱼系没有mb蛋白,mb mRNA几乎完全降解,并且在活力、长度或心脏大小方面没有变化。此外,对成人心脏组织的转录组学分析表明,mb敲除不会导致其他基因表达的改变。最后,在36个筛选的基因座中没有观察到脱靶。总之,我们已经产生了三个在胚胎和幼虫发育过程中表型不可区分的mb敲除系,并验证了其中一个系mb(Auzf13.2)在成年心脏中没有遗传补偿或脱靶效应的迹象。这些发现表明,mb(Auzf13.2)有望成为研究mb在斑马鱼中生物学作用的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1