{"title":"Multiscale simulation of the effect of low-intensity pulsed ultrasound on the mechanical properties distribution of osteocytes.","authors":"Shenggang Li, Haiying Liu, Mingzhi Li, Chunqiu Zhang","doi":"10.1080/10255842.2023.2270103","DOIUrl":null,"url":null,"abstract":"<p><p>Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2058-2070"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2270103","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.