Xue Li Guan , Dorothy Pei Shan Chang , Zhen Xuan Mok , Bernett Lee
{"title":"Assessing variations in manual pipetting: An under-investigated requirement of good laboratory practice","authors":"Xue Li Guan , Dorothy Pei Shan Chang , Zhen Xuan Mok , Bernett Lee","doi":"10.1016/j.jmsacl.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Pipettes are essential tools for biomedical and analytical laboratories, analogous to workstations for computer scientists. Variation in pipetting is a known unknown, as it is generally accepted that variations exist, but thus far, there have been limited studies on the extent of these variations in practice. In this mini-review, we highlight how manual pipetting is a key technique in the laboratory, and, although simple, inaccuracy and imprecision exist. If variations are not adequately addressed, errors can be compounded and consequently compromise data quality. Determination of the accuracy and precision of manual pipetting is straightforward, and here we review two common approaches that use gravimetry and spectrophotometry as readouts. We also provide detailed protocols for determination of accuracy and precision using manual single and multi-channel pipettes. These simple-to-use methods can be used by any laboratory for competency training and regular checks. Having a common protocol for evaluation of variation will also enable cross-laboratory comparison and potentially facilitate establishment of a reference value of acceptable ranges for operator error. Such a value could be of relevance to the scientific community for benchmarking and assuring good laboratory practice.</p></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"30 ","pages":"Pages 25-29"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/45/bd/main.PMC10569977.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X23000317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pipettes are essential tools for biomedical and analytical laboratories, analogous to workstations for computer scientists. Variation in pipetting is a known unknown, as it is generally accepted that variations exist, but thus far, there have been limited studies on the extent of these variations in practice. In this mini-review, we highlight how manual pipetting is a key technique in the laboratory, and, although simple, inaccuracy and imprecision exist. If variations are not adequately addressed, errors can be compounded and consequently compromise data quality. Determination of the accuracy and precision of manual pipetting is straightforward, and here we review two common approaches that use gravimetry and spectrophotometry as readouts. We also provide detailed protocols for determination of accuracy and precision using manual single and multi-channel pipettes. These simple-to-use methods can be used by any laboratory for competency training and regular checks. Having a common protocol for evaluation of variation will also enable cross-laboratory comparison and potentially facilitate establishment of a reference value of acceptable ranges for operator error. Such a value could be of relevance to the scientific community for benchmarking and assuring good laboratory practice.