The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2020-07-28 eCollection Date: 2020-01-01 DOI:10.34133/2020/1016207
Charles DeLisi, Aristides Patrinos, Michael MacCracken, Dan Drell, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Henry Jacoby, Mary Lidstrom, Jerry Melillo, Ron Milo, Keith Paustian, John Reilly, Richard J Roberts, Daniel Segrè, Susan Solomon, Dominic Woolf, Stan D Wullschleger, Xiaohan Yang
{"title":"The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges.","authors":"Charles DeLisi,&nbsp;Aristides Patrinos,&nbsp;Michael MacCracken,&nbsp;Dan Drell,&nbsp;George Annas,&nbsp;Adam Arkin,&nbsp;George Church,&nbsp;Robert Cook-Deegan,&nbsp;Henry Jacoby,&nbsp;Mary Lidstrom,&nbsp;Jerry Melillo,&nbsp;Ron Milo,&nbsp;Keith Paustian,&nbsp;John Reilly,&nbsp;Richard J Roberts,&nbsp;Daniel Segrè,&nbsp;Susan Solomon,&nbsp;Dominic Woolf,&nbsp;Stan D Wullschleger,&nbsp;Xiaohan Yang","doi":"10.34133/2020/1016207","DOIUrl":null,"url":null,"abstract":"<p><p>The long atmospheric residence time of CO<sub>2</sub> creates an urgent need to add atmospheric carbon drawdown to CO<sub>2</sub> regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J. Roberts, Daniel Segre, Susan Solomon, Elizabeth Strychalski, Chris Voigt, Dominic Woolf, Stan Wullschleger, and Xiaohan Yang) identified a range of possibilities by which SSB might help reduce greenhouse gas concentrations and which might also contribute to environmental sustainability and adaptation. These include, among other possibilities, engineering plants to convert CO<sub>2</sub> produced by respiration into a stable carbonate, designing plants with an increased root-to-shoot ratio, and creating plants with the ability to self-fertilize. A number of serious ecological and societal challenges must, however, be confronted and resolved before any such application can be fully assessed, realized, and deployed.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521736/pdf/","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2020/1016207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 19

Abstract

The long atmospheric residence time of CO2 creates an urgent need to add atmospheric carbon drawdown to CO2 regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J. Roberts, Daniel Segre, Susan Solomon, Elizabeth Strychalski, Chris Voigt, Dominic Woolf, Stan Wullschleger, and Xiaohan Yang) identified a range of possibilities by which SSB might help reduce greenhouse gas concentrations and which might also contribute to environmental sustainability and adaptation. These include, among other possibilities, engineering plants to convert CO2 produced by respiration into a stable carbonate, designing plants with an increased root-to-shoot ratio, and creating plants with the ability to self-fertilize. A number of serious ecological and societal challenges must, however, be confronted and resolved before any such application can be fully assessed, realized, and deployed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成生物学在减少大气温室气体中的作用:前景和挑战。
二氧化碳在大气中的停留时间很长,迫切需要将大气中的碳下降添加到二氧化碳调节策略中。合成和系统生物学(SSB)能够操纵细胞表型,为扩大和增加当前旨在减少大气碳的土地管理实践的新可能性提供了一种强大的方法。参与者(出席者:Christina Agapakis、George Annas、Adam Arkin、George Church、Robert Cook Deegan、Charles DeLisi、Dan Drell、Sheldon Glashow、Steve Hamburg、Henry Jacoby、Henry Kelly、Mark Kon、Todd Kuiken、Mary Lidstrom、Mike MacCracken、June Medford、Jerry Melillo、Ron Milo、Pilar Ossorio、Ari Patrinos、Keith Paustian、Kristala Jones Prather、Kent Redford、David Resnik、John Reilly、Richard J。Roberts、Daniel Segre、Susan Solomon、Elizabeth Strychalski、Chris Voigt、Dominic Woolf、Stan Wullschleger和Xiaohan Yang)确定了一系列可能性,通过这些可能性,SSB可能有助于降低温室气体浓度,也可能有助于环境可持续性和适应。除其他可能性外,这些可能性包括工程植物将呼吸产生的二氧化碳转化为稳定的碳酸盐,设计具有更高根冠比的植物,以及创造具有自我施肥能力的植物。然而,在全面评估、实现和部署任何此类应用之前,必须面对并解决一些严重的生态和社会挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons. Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy. Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. A Light-Driven In Vitro Enzymatic Biosystem for the Synthesis of α-Farnesene from Methanol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1