Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2022-06-15 eCollection Date: 2022-01-01 DOI:10.34133/2022/9898461
Zhenkun Shi, Pi Liu, Xiaoping Liao, Zhitao Mao, Jianqi Zhang, Qinhong Wang, Jibin Sun, Hongwu Ma, Yanhe Ma
{"title":"Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing.","authors":"Zhenkun Shi,&nbsp;Pi Liu,&nbsp;Xiaoping Liao,&nbsp;Zhitao Mao,&nbsp;Jianqi Zhang,&nbsp;Qinhong Wang,&nbsp;Jibin Sun,&nbsp;Hongwu Ma,&nbsp;Yanhe Ma","doi":"10.34133/2022/9898461","DOIUrl":null,"url":null,"abstract":"<p><p>Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a wide range of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, we review the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. We first briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis for data-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are also presented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factory development using examples from recent studies, including the prediction of protein function, improvement of metabolic models, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization. In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methods should be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains for industrial biomanufacturing.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9898461"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521697/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9898461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a wide range of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, we review the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. We first briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis for data-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are also presented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factory development using examples from recent studies, including the prediction of protein function, improvement of metabolic models, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization. In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methods should be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains for industrial biomanufacturing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于工业生物制造的数据驱动合成细胞工厂开发。
人工智能(AI)和机器学习(ML)的革命性突破对广泛的科学学科产生了深远影响,包括用于生物制造的人工细胞工厂的发展。在这篇论文中,我们回顾了数据驱动方法在新蛋白质、途径和菌株设计中的应用的最新研究。我们首先简要介绍了与工业生物制造相关的各种类型的数据和数据库,它们是数据驱动研究的基础。还介绍了不同类型的算法,包括传统的ML和最近的深度学习方法。然后,我们使用最近研究的例子,展示了如何将这些基于数据的方法应用于解决细胞工厂开发中的各种问题,包括蛋白质功能的预测、代谢模型的改进、缺失动力学参数的估计、非天然生物合成途径的设计和途径优化。在最后一节中,我们讨论了这些数据驱动方法目前的局限性,并提出数据驱动方法应与机械模型相结合,以相互补充,促进工业生物制造合成菌株的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. Next-Generation Tumor Targeting with Genetically Engineered Cell Membrane-Coated Nanoparticles. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1