High-Throughput Prediction and Design of Novel Conopeptides for Biomedical Research and Development.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2022-11-07 eCollection Date: 2022-01-01 DOI:10.34133/2022/9895270
Bingmiao Gao, Yu Huang, Chao Peng, Bo Lin, Yanling Liao, Chao Bian, Jiaan Yang, Qiong Shi
{"title":"High-Throughput Prediction and Design of Novel Conopeptides for Biomedical Research and Development.","authors":"Bingmiao Gao,&nbsp;Yu Huang,&nbsp;Chao Peng,&nbsp;Bo Lin,&nbsp;Yanling Liao,&nbsp;Chao Bian,&nbsp;Jiaan Yang,&nbsp;Qiong Shi","doi":"10.34133/2022/9895270","DOIUrl":null,"url":null,"abstract":"<p><p>Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to their pharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800 <i>Conus</i> species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins). This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized. Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to mine diverse <i>Conus</i> venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficient way. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, and their binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides and multiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and design of potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9895270"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9895270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to their pharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800 Conus species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins). This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized. Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to mine diverse Conus venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficient way. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, and their binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides and multiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and design of potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物医学研究和开发的新型Conopeptides的高通量预测和设计。
锥蜗牛毒液被认为是国际科学家和商人的宝贵财富,主要是因为它们在开发治疗各种人类疾病的海洋药物方面的药理学应用。迄今为止,记录了大约800种锥虫,每种锥虫都会产生1000多种毒液肽(称为锥肽或锥毒素)。这反映了锥蜗牛的高度多样性和复杂性,尽管它们的大部分毒液仍然没有特征。最近开发了先进的多组学(如基因组学、转录组学和蛋白质组学)方法来挖掘不同的锥虫毒液样本,主要目的是以有效的方式预测和鉴定潜在的感兴趣的锥虫肽。一些生物信息学技术已被应用于预测和设计新的conopeptide序列、相关靶标及其结合模式。这篇综述概述了目前关于锥肽高度多样性的知识,以及在高通量预测新锥肽序列方面的多组学进展,以及基于这些毒素与其分子靶标之间预测或验证的相互作用的潜在药物的分子建模和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. Next-Generation Tumor Targeting with Genetically Engineered Cell Membrane-Coated Nanoparticles. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1