CRISPR-Cas-Based Engineering of Probiotics.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.34133/bdr.0017
Ling Liu, Shimaa Elsayed Helal, Nan Peng
{"title":"CRISPR-Cas-Based Engineering of Probiotics.","authors":"Ling Liu,&nbsp;Shimaa Elsayed Helal,&nbsp;Nan Peng","doi":"10.34133/bdr.0017","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"5 ","pages":"0017"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541000/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CRISPR-Cas的益生菌工程。
益生菌是微生物学领域的瑰宝。它们已被广泛应用于食品工业、临床治疗等领域。模棱两可的健康促进作用和未知的作用机制是益生菌进一步发展应用的最大障碍。近年来,人们开发并应用了各种基因组编辑技术来探索益生菌的作用机制和功能修饰。作为重要的基因组编辑工具,CRISPR-Cas系统为益生菌基因组编辑开辟了新的改进。CRISPR-Cas系统具有高效、灵活、特异等优点。在这里,我们总结了CRISPR-Cas系统在益生菌中的分类和分布,以及在此基础上开发的编辑工具。然后,我们讨论了基于CRISPR-Cas系统的益生菌基因组编辑以及通过CRISPR-Cas系统工程化益生菌的应用。最后,我们提出了一条与基因工程益生菌相关的CRISPR系统的设计路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. Next-Generation Tumor Targeting with Genetically Engineered Cell Membrane-Coated Nanoparticles. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1