Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA) for Adipose Tissue Segmentation.

IF 5 Q1 ENGINEERING, BIOMEDICAL BME frontiers Pub Date : 2022-06-03 eCollection Date: 2022-01-01 DOI:10.34133/2022/9854084
Joshua K Peeples, Julie F Jameson, Nisha M Kotta, Jonathan M Grasman, Whitney L Stoppel, Alina Zare
{"title":"Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA) for Adipose Tissue Segmentation.","authors":"Joshua K Peeples,&nbsp;Julie F Jameson,&nbsp;Nisha M Kotta,&nbsp;Jonathan M Grasman,&nbsp;Whitney L Stoppel,&nbsp;Alina Zare","doi":"10.34133/2022/9854084","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. We aim to develop a machine learning algorithm to quantify adipose tissue deposition at surgical sites as a function of biomaterial implantation. <i>Impact Statement</i>. To our knowledge, this study is the first investigation to apply convolutional neural network (CNN) models to identify and segment adipose tissue in histological images from silk fibroin biomaterial implants. <i>Introduction</i>. When designing biomaterials for the treatment of various soft tissue injuries and diseases, one must consider the extent of adipose tissue deposition. In this work, we analyzed adipose tissue accumulation in histological images of sectioned silk fibroin-based biomaterials excised from rodents following subcutaneous implantation for 1, 2, 4, or 8 weeks. Current strategies for quantifying adipose tissue after biomaterial implantation are often tedious and prone to human bias during analysis. <i>Methods</i>. We used CNN models with novel spatial histogram layer(s) that can more accurately identify and segment regions of adipose tissue in hematoxylin and eosin (H&E) and Masson's trichrome stained images, allowing for determination of the optimal biomaterial formulation. We compared the method, Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA), to the baseline UNET model and an extension of the baseline model, attention UNET, as well as to versions of the models with a supplemental attention-inspired mechanism (JOSHUA+ and UNET+). <i>Results</i>. The inclusion of histogram layer(s) in our models shows improved performance through qualitative and quantitative evaluation. <i>Conclusion</i>. Our results demonstrate that the proposed methods, JOSHUA and JOSHUA+, are highly beneficial for adipose tissue identification and localization. The new histological dataset and code used in our experiments are publicly available.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9854084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. We aim to develop a machine learning algorithm to quantify adipose tissue deposition at surgical sites as a function of biomaterial implantation. Impact Statement. To our knowledge, this study is the first investigation to apply convolutional neural network (CNN) models to identify and segment adipose tissue in histological images from silk fibroin biomaterial implants. Introduction. When designing biomaterials for the treatment of various soft tissue injuries and diseases, one must consider the extent of adipose tissue deposition. In this work, we analyzed adipose tissue accumulation in histological images of sectioned silk fibroin-based biomaterials excised from rodents following subcutaneous implantation for 1, 2, 4, or 8 weeks. Current strategies for quantifying adipose tissue after biomaterial implantation are often tedious and prone to human bias during analysis. Methods. We used CNN models with novel spatial histogram layer(s) that can more accurately identify and segment regions of adipose tissue in hematoxylin and eosin (H&E) and Masson's trichrome stained images, allowing for determination of the optimal biomaterial formulation. We compared the method, Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA), to the baseline UNET model and an extension of the baseline model, attention UNET, as well as to versions of the models with a supplemental attention-inspired mechanism (JOSHUA+ and UNET+). Results. The inclusion of histogram layer(s) in our models shows improved performance through qualitative and quantitative evaluation. Conclusion. Our results demonstrate that the proposed methods, JOSHUA and JOSHUA+, are highly beneficial for adipose tissue identification and localization. The new histological dataset and code used in our experiments are publicly available.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脂肪组织分割的联合优化空间直方图UNET架构(JOSHUA)。
客观的我们的目标是开发一种机器学习算法,将手术部位的脂肪组织沉积量化为生物材料植入的函数。影响声明。据我们所知,这项研究是首次应用卷积神经网络(CNN)模型来识别和分割丝素生物材料植入物组织学图像中的脂肪组织。介绍在设计用于治疗各种软组织损伤和疾病的生物材料时,必须考虑脂肪组织沉积的程度。在这项工作中,我们分析了从啮齿类动物皮下植入1、2、4或8周后切除的基于丝素蛋白的生物材料切片的组织学图像中的脂肪组织积聚。目前在生物材料植入后量化脂肪组织的策略通常是乏味的,并且在分析过程中容易产生人为偏差。方法。我们使用了具有新空间直方图层的CNN模型,该模型可以更准确地识别和分割苏木精和伊红(H&E)以及Masson三色染色图像中的脂肪组织区域,从而确定最佳生物材料配方。我们将联合优化空间直方图UNET架构(JOSHUA)方法与基线UNET模型、基线模型的扩展注意力UNET以及具有补充注意力激发机制的模型版本(JOSHUA+和UNET+)进行了比较。后果通过定性和定量评估,我们的模型中包含的直方图层显示出性能的提高。结论我们的结果表明,所提出的方法JOSHUA和JOSHUA+对脂肪组织的识别和定位非常有益。我们实验中使用的新组织学数据集和代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling. Cationized Decalcified Bone Matrix for Infected Bone Defect Treatment. Functional Neural Networks in Human Brain Organoids. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. Synergistic Assembly of 1DZnO and Anti-CYFRA 21-1: A Physicochemical Approach to Optical Biosensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1