Tissue Engineering in Neuroscience: Applications and Perspectives.

IF 5 Q1 ENGINEERING, BIOMEDICAL BME frontiers Pub Date : 2023-01-16 eCollection Date: 2023-01-01 DOI:10.34133/bmef.0007
Xiaoge Zhang, Fuyao Liu, Zhen Gu
{"title":"Tissue Engineering in Neuroscience: Applications and Perspectives.","authors":"Xiaoge Zhang, Fuyao Liu, Zhen Gu","doi":"10.34133/bmef.0007","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders have always been a threat to human physical and mental health nowadays, which are closely related to the nonregeneration of neurons in the nervous system (NS). The damage to the NS is currently difficult to repair using conventional therapies, such as surgery and medication. Therefore, repairing the damaged NS has always been a vast challenge in the area of neurology. Tissue engineering (TE), which integrates the cell biology and materials science to reconstruct or repair organs and tissues, has widespread applications in bone, periodontal tissue defects, skin repairs, and corneal transplantation. Recently, tremendous advances have been made in TE regarding neuroscience. In this review, we summarize TE's recent progress in neuroscience, including pathological mechanisms of various neurological disorders, the concepts and classification of TE, and the most recent development of TE in neuroscience. Lastly, we prospect the future directions and unresolved problems of TE in neuroscience.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neurological disorders have always been a threat to human physical and mental health nowadays, which are closely related to the nonregeneration of neurons in the nervous system (NS). The damage to the NS is currently difficult to repair using conventional therapies, such as surgery and medication. Therefore, repairing the damaged NS has always been a vast challenge in the area of neurology. Tissue engineering (TE), which integrates the cell biology and materials science to reconstruct or repair organs and tissues, has widespread applications in bone, periodontal tissue defects, skin repairs, and corneal transplantation. Recently, tremendous advances have been made in TE regarding neuroscience. In this review, we summarize TE's recent progress in neuroscience, including pathological mechanisms of various neurological disorders, the concepts and classification of TE, and the most recent development of TE in neuroscience. Lastly, we prospect the future directions and unresolved problems of TE in neuroscience.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经科学中的组织工程:应用与展望。
神经系统疾病一直是当今人类身心健康的威胁,与神经系统中神经元的不再生密切相关。NS的损伤目前很难使用传统疗法修复,如手术和药物治疗。因此,修复受损的NS一直是神经病学领域的一个巨大挑战。组织工程(TE)融合了细胞生物学和材料科学来重建或修复器官和组织,在骨、牙周组织缺损、皮肤修复和角膜移植方面有着广泛的应用。近年来,TE在神经科学方面取得了巨大的进展。在这篇综述中,我们总结了TE在神经科学方面的最新进展,包括各种神经疾病的病理机制,TE的概念和分类,以及TE在神经学科中的最新发展。最后,展望了TE在神经科学领域的发展方向和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling. Cationized Decalcified Bone Matrix for Infected Bone Defect Treatment. Functional Neural Networks in Human Brain Organoids. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. Synergistic Assembly of 1DZnO and Anti-CYFRA 21-1: A Physicochemical Approach to Optical Biosensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1