Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.

IF 5 Q1 ENGINEERING, BIOMEDICAL BME frontiers Pub Date : 2023-09-25 eCollection Date: 2023-01-01 DOI:10.34133/bmef.0030
Yuming Yang, Dong Jiang, Qiongwen Zhang, Xiaoxia Le, Tao Chen, Huilong Duan, Yinfei Zheng
{"title":"Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.","authors":"Yuming Yang,&nbsp;Dong Jiang,&nbsp;Qiongwen Zhang,&nbsp;Xiaoxia Le,&nbsp;Tao Chen,&nbsp;Huilong Duan,&nbsp;Yinfei Zheng","doi":"10.34133/bmef.0030","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective:</i> The objective of this work is to investigate the mapping relationship between transcranial ultrasound image quality and transcranial acoustic metamaterial parameters using inverse design methods. <i>Impact Statement:</i> Our study provides insights into inverse design methods and opens the route to guide the preparation of transcranial acoustic metamaterials. <i>Introduction:</i> The development of acoustic metamaterials has enabled the exploration of cranial ultrasound, and it has been found that the influence of the skull distortion layer on acoustic waves can be effectively eliminated by adjusting the parameters of the acoustic metamaterial. However, the interaction mechanism between transcranial ultrasound images and transcranial acoustic metamaterial parameters is unknown. <i>Methods:</i> In this study, 1,456 transcranial ultrasound image datasets were used to explore the mapping relationship between the quality of transcranial ultrasound images and the parameters of transcranial acoustic metamaterials. <i>Results:</i> The multioutput parameter prediction model of transcranial metamaterials based on deep back-propagation neural network was built, and metamaterial parameters under transcranial image evaluation indices are predicted using the prediction model. <i>Conclusion:</i> This inverse big data design approach paves the way for guiding the preparation of transcranial metamaterials.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"4 ","pages":"0030"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521689/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bmef.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Objective: The objective of this work is to investigate the mapping relationship between transcranial ultrasound image quality and transcranial acoustic metamaterial parameters using inverse design methods. Impact Statement: Our study provides insights into inverse design methods and opens the route to guide the preparation of transcranial acoustic metamaterials. Introduction: The development of acoustic metamaterials has enabled the exploration of cranial ultrasound, and it has been found that the influence of the skull distortion layer on acoustic waves can be effectively eliminated by adjusting the parameters of the acoustic metamaterial. However, the interaction mechanism between transcranial ultrasound images and transcranial acoustic metamaterial parameters is unknown. Methods: In this study, 1,456 transcranial ultrasound image datasets were used to explore the mapping relationship between the quality of transcranial ultrasound images and the parameters of transcranial acoustic metamaterials. Results: The multioutput parameter prediction model of transcranial metamaterials based on deep back-propagation neural network was built, and metamaterial parameters under transcranial image evaluation indices are predicted using the prediction model. Conclusion: This inverse big data design approach paves the way for guiding the preparation of transcranial metamaterials.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络设计的经颅声学超材料参数反演。
目的:利用逆向设计方法研究经颅超声图像质量与经颅声学超材料参数之间的映射关系。影响声明:我们的研究为逆向设计方法提供了见解,并为指导经颅声学超材料的制备开辟了道路。引言:声学超材料的发展使颅骨超声得以探索,研究发现,通过调整声学超材料参数,可以有效消除颅骨畸变层对声波的影响。然而,经颅超声图像与经颅声学超材料参数之间的相互作用机制尚不清楚。方法:本研究使用1456个经颅超声图像数据集,探讨经颅超声成像质量与经颅声学超材料参数之间的映射关系。结果:建立了基于深度反向传播神经网络的经颅超材料多输出参数预测模型,并利用该预测模型对经颅图像评价指标下的超材料参数进行了预测。结论:这种反向大数据设计方法为指导经颅超材料的制备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Recent Advances and Future Directions in Sonodynamic Therapy for Cancer Treatment. Preparation and Characterization of C-Reactive Protein Dual-Particle Latex-Enhanced Immunoturbidimetric Reagents. Detection of Hg2+ Using a Dual-Mode Biosensing Probe Constructed Using Ratiometric Fluorescent Copper Nanoclusters@Zirconia Metal-Organic Framework/N-Methyl Mesoporphyrin IX and Colorimetry G-Quadruplex/Hemin Peroxidase-Mimicking G-Quadruplex DNAzyme. RGX Ensemble Model for Advanced Prediction of Mortality Outcomes in Stroke Patients. A Novel System for Fabricating Microspheres with Microelectromechanical System-Based Bioprinting Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1