Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer.

Oleg S Tutanov, Sarah E Glass, Robert J Coffey
{"title":"Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer.","authors":"Oleg S Tutanov, Sarah E Glass, Robert J Coffey","doi":"10.20517/evcna.2023.17","DOIUrl":null,"url":null,"abstract":"<p><p>Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to \"bring order to chaos.\" In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"4 2","pages":"195-217"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结直肠癌癌症中GPI-锚定蛋白及其细胞外载体之间的新联系。
尽管细胞外小泡(EVs)是在40多年前发现的,但人们对分泌型小泡及其伴随的货物作为新的细胞内通信模式的兴趣再次高涨。除了囊泡外,最近还分离和表征了两种无膜纳米颗粒,外单体和超单体。在这个快速扩张的领域,将货物和特定功能分配给特定承运人一直是一项挑战。分离方法的改进、控制良好的研究以及细胞外小泡研究的最低信息(MISEV)所详述的指南正被用来“拨乱反正”。在这篇综述中,我们将简要总结结直肠癌癌症背景下的三种类型的细胞外载体-小EV(sEV)、外单体和超单体。我们发现,许多GPI锚定蛋白(GPI-AP)在CRC中过表达,在外泌体(sEV的一个独特亚群)中富集,并且可以在外泌物和超泌物中检测到。这提供了使用DPEP1(一种在CRC中上调的GPI-AP)作为主要例子来详细说明GPI-AP的生物发生、修饰和贩运的机会。我们已经对CRC中分泌的GPI锚定蛋白进行了编目,并将重点介绍我们检测到的部分CRC相关GPI锚定于蛋白的特征。最后,我们将讨论在CRC中研究这些分泌型GPI AP的剩余挑战和未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design Synovial fluid extracellular vesicles as arthritis biomarkers: the added value of lipid-profiling and integrated omics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1