{"title":"The flame displacement speed: A key quantity for turbulent combustion and combustion instability","authors":"P. Palies","doi":"10.1177/17568277221081298","DOIUrl":null,"url":null,"abstract":"Future combustion power and propulsion systems may operate in premixed regime enabling reduced fuel burn and reduced pollutant emissions. The turbulent premixed regime in those future combustion systems is likely to be in the corrugated regime where modeling the flame as a thin interface propagating into the fresh gas is made possible. The flame displacement speed is thus a key quantity for turbulent combustion in this regime. This quantity is also important for combustion instabilities. Indeed, the flame displacement speed S d combined to the flow speed v determines the flame surface location by determining the flame surface speed w s . The flame surface location has shown to play a major role on combustion instabilities. Research work have also demonstrated the role of the flame displacement speed on the flame response which is used for subsequent combustion instability prediction. In this context, the derivation of flame speed models and flame transfer function models based on this quantity are required. This paper presents the theoretical derivation of flame transfer function coefficients for swirling premixed flames in this context. The derivation is based on the definition of the flame speed for turbulent flame, its perturbed form for oscillating flow, and the kinematic flame-flow speed budget. The obtained results are compared to previous literature data and discussed. The effect of the flame angle, id est the effect of the swirl number on the flame response is also investigated. This works motivates detailed local measurements and simulations to evaluate flow-flame speed budget terms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277221081298","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Future combustion power and propulsion systems may operate in premixed regime enabling reduced fuel burn and reduced pollutant emissions. The turbulent premixed regime in those future combustion systems is likely to be in the corrugated regime where modeling the flame as a thin interface propagating into the fresh gas is made possible. The flame displacement speed is thus a key quantity for turbulent combustion in this regime. This quantity is also important for combustion instabilities. Indeed, the flame displacement speed S d combined to the flow speed v determines the flame surface location by determining the flame surface speed w s . The flame surface location has shown to play a major role on combustion instabilities. Research work have also demonstrated the role of the flame displacement speed on the flame response which is used for subsequent combustion instability prediction. In this context, the derivation of flame speed models and flame transfer function models based on this quantity are required. This paper presents the theoretical derivation of flame transfer function coefficients for swirling premixed flames in this context. The derivation is based on the definition of the flame speed for turbulent flame, its perturbed form for oscillating flow, and the kinematic flame-flow speed budget. The obtained results are compared to previous literature data and discussed. The effect of the flame angle, id est the effect of the swirl number on the flame response is also investigated. This works motivates detailed local measurements and simulations to evaluate flow-flame speed budget terms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.