Optimising Poisson bridge constructions for variance reduction methods

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2021-06-01 DOI:10.1515/mcma-2021-2090
C. Beentjes
{"title":"Optimising Poisson bridge constructions for variance reduction methods","authors":"C. Beentjes","doi":"10.1515/mcma-2021-2090","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we discuss different Monte Carlo (MC) approaches to generate unit-rate Poisson processes and provide an analysis of Poisson bridge constructions, which form the discrete analogue of the well-known Brownian bridge construction for a Wiener process. One of the main advantages of these Poisson bridge constructions is that they, like the Brownian bridge, can be effectively combined with variance reduction techniques. In particular, we show here, in practice and proof, how we can achieve orders of magnitude efficiency improvement over standard MC approaches when generating unit-rate Poisson processes via a synthesis of antithetic sampling and Poisson bridge constructions. At the same time we provide practical guidance as to how to implement and tune Poisson bridge methods to achieve, in a mean sense, (near) optimal performance.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"119 35","pages":"249 - 275"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2090","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper we discuss different Monte Carlo (MC) approaches to generate unit-rate Poisson processes and provide an analysis of Poisson bridge constructions, which form the discrete analogue of the well-known Brownian bridge construction for a Wiener process. One of the main advantages of these Poisson bridge constructions is that they, like the Brownian bridge, can be effectively combined with variance reduction techniques. In particular, we show here, in practice and proof, how we can achieve orders of magnitude efficiency improvement over standard MC approaches when generating unit-rate Poisson processes via a synthesis of antithetic sampling and Poisson bridge constructions. At the same time we provide practical guidance as to how to implement and tune Poisson bridge methods to achieve, in a mean sense, (near) optimal performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方差减少方法的泊松桥结构优化
摘要本文讨论了不同的蒙特卡罗(MC)方法来生成单位速率泊松过程,并提供了泊松桥构造的分析,它形成了著名的维纳过程的布朗桥构造的离散模拟。这些泊松桥结构的主要优点之一是,它们像布朗桥一样,可以有效地与方差减少技术相结合。特别是,在实践和证明中,我们展示了如何通过合成反采样和泊松桥构造来生成单位速率泊松过程,从而实现比标准MC方法的数量级效率提高。同时,我们提供了关于如何实现和调整泊松桥方法以达到平均意义上(接近)最佳性能的实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1