Crack detection via strain measurements in fatigue testing

IF 1.8 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Strain Pub Date : 2021-03-26 DOI:10.1111/str.12384
H. Al‐Karawi, Rüdiger U. Franz Bock und Polach, M. Al‐Emrani
{"title":"Crack detection via strain measurements in fatigue testing","authors":"H. Al‐Karawi, Rüdiger U. Franz Bock und Polach, M. Al‐Emrani","doi":"10.1111/str.12384","DOIUrl":null,"url":null,"abstract":"Fatigue cracks have appeared as a significant issue for joints and connections in existing steel structures in the last decades. Therefore, those are a major inspection and maintenance matter for any steel structure's operator. This emphasises the importance of using a reliable detection method to determine the crack size and assessing the severity of such a crack on the structural integrity of a structure. In this article, the effectiveness of strain measurement in detecting fatigue cracks in transversal non‐load carrying welded attachment subjected to out of plane axial loading is studied. Numerical analysis and experimental investigations allowed to correlate the decrease in strain measured by attached gauges to the crack depth at the weld toe. In addition, different strain evolution patterns were found during fatigue testing, and the fracture surfaces of the specimens were observed to interpret these patterns. Moreover, the crack position with respect to the weld toe surface was predicted via strain measurements.","PeriodicalId":51176,"journal":{"name":"Strain","volume":"4 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/str.12384","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12384","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 5

Abstract

Fatigue cracks have appeared as a significant issue for joints and connections in existing steel structures in the last decades. Therefore, those are a major inspection and maintenance matter for any steel structure's operator. This emphasises the importance of using a reliable detection method to determine the crack size and assessing the severity of such a crack on the structural integrity of a structure. In this article, the effectiveness of strain measurement in detecting fatigue cracks in transversal non‐load carrying welded attachment subjected to out of plane axial loading is studied. Numerical analysis and experimental investigations allowed to correlate the decrease in strain measured by attached gauges to the crack depth at the weld toe. In addition, different strain evolution patterns were found during fatigue testing, and the fracture surfaces of the specimens were observed to interpret these patterns. Moreover, the crack position with respect to the weld toe surface was predicted via strain measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疲劳试验中通过应变测量来检测裂纹
近几十年来,疲劳裂纹已成为现有钢结构节点连接的一个重要问题。因此,这些是任何钢结构操作人员的主要检查和维护事项。这强调了使用可靠的检测方法来确定裂缝尺寸和评估这种裂缝对结构完整性的严重程度的重要性。本文研究了应变测量在横向无载焊接附件受轴向外载荷作用下检测疲劳裂纹的有效性。数值分析和实验研究表明,随附压力表测量的应变下降与焊接趾处的裂纹深度有关。此外,在疲劳试验中发现了不同的应变演化模式,并观察了试样的断口表面来解释这些模式。此外,通过应变测量预测了相对于焊缝趾面的裂纹位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Strain
Strain 工程技术-材料科学:表征与测试
CiteScore
4.10
自引率
4.80%
发文量
27
期刊介绍: Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage. Strain welcomes papers that deal with novel work in the following areas: experimental techniques non-destructive evaluation techniques numerical analysis, simulation and validation residual stress measurement techniques design of composite structures and components impact behaviour of materials and structures signal and image processing transducer and sensor design structural health monitoring biomechanics extreme environment micro- and nano-scale testing method.
期刊最新文献
An artificial neural network for digital image correlation dynamic subset selection based on speckle pattern quality metrics A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4‐QT specimens Biaxial expansion due to compression experiments for measuring the failure strain of tubular samples On the use of an induced temperature gradient and full‐field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316 Numerical and experimental investigation of the residual stress distribution of internal thread cold extrusion and tap wear
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1