On the estimation of near-field air blast peak overpressure from cylindrical charges

IF 2.1 Q2 ENGINEERING, CIVIL International Journal of Protective Structures Pub Date : 2023-05-19 DOI:10.1177/20414196231177358
J. Liu, C. Gao, Z. Sun, JW Yin
{"title":"On the estimation of near-field air blast peak overpressure from cylindrical charges","authors":"J. Liu, C. Gao, Z. Sun, JW Yin","doi":"10.1177/20414196231177358","DOIUrl":null,"url":null,"abstract":"In the near field, the air blast peak overpressure from cylindrical charges may vary by several times with angles at the same scaled distance. We propose an estimation equation for the peak overpressure from cylindrical charges, which can predict the peak overpressure from cylindrical charges at any positions in the near field. The estimation equation is in the form of piecewise function which contains three variables of length-to-diameter ratio, angle and scaled distance, and the applicability of our estimation equation is verified by experiment and simulation. After preliminary verification, the application range of length-to-diameter ratio of cylindrical charge is [Formula: see text] and that of scaled distance is [Formula: see text]. The estimation equation can be rapidly applied to the assessment of near-field target damage and protection against air blast from cylindrical charges, which is a significant supplement to the traditional empirical equations for spherical charge.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196231177358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In the near field, the air blast peak overpressure from cylindrical charges may vary by several times with angles at the same scaled distance. We propose an estimation equation for the peak overpressure from cylindrical charges, which can predict the peak overpressure from cylindrical charges at any positions in the near field. The estimation equation is in the form of piecewise function which contains three variables of length-to-diameter ratio, angle and scaled distance, and the applicability of our estimation equation is verified by experiment and simulation. After preliminary verification, the application range of length-to-diameter ratio of cylindrical charge is [Formula: see text] and that of scaled distance is [Formula: see text]. The estimation equation can be rapidly applied to the assessment of near-field target damage and protection against air blast from cylindrical charges, which is a significant supplement to the traditional empirical equations for spherical charge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圆柱装药近场空气爆炸峰值超压的估算
在近场中,在相同标度距离下,圆柱形装药的空气冲击峰值超压可能随角度变化数倍。我们提出了一个圆柱形装药峰值超压的估计方程,该方程可以预测近场中任何位置的圆柱形装药的峰值超压。该估计方程为分段函数形式,包含长径比、角度和缩放距离三个变量,通过实验和仿真验证了该估计方程的适用性。经初步验证,圆柱形装药长径比的适用范围为[公式:见正文],定标距离的适用范围是[公式:详见正文]。该估计方程可快速应用于近场目标损伤评估和圆柱装药对空气冲击的防护,是对传统球形装药经验方程的重要补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
期刊最新文献
Investigating the significance of non-ideal effects in large-scale blast propagation A high explosive blast simulator Pounding response of concrete rods with rough impacting surfaces Airblast observations and near-field modeling of the large surface explosion coupling experiment Development of a fast-running method for prediction of blast propagation in partially confined spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1