{"title":"Multivariate time series models for mixed data","authors":"Zinsou Max Debaly, L. Truquet","doi":"10.3150/22-bej1474","DOIUrl":null,"url":null,"abstract":"We introduce a general approach for modeling the dynamic of multivariate time series when the data are of mixed type (binary/count/continuous). Our method is quite flexible and conditionally on past values, each coordinate at time $t$ can have a distribution compatible with a standard univariate time series model such as GARCH, ARMA, INGARCH or logistic models whereas past values of the other coordinates play the role of exogenous covariates in the dynamic. The simultaneous dependence in the multivariate time series can be modeled with a copula. Additional exogenous covariates are also allowed in the dynamic. We first study usual stability properties of these models and then show that autoregressive parameters can be consistently estimated equation-by-equation using a pseudo-maximum likelihood method, leading to a fast implementation even when the number of time series is large. Moreover, we prove consistency results when a parametric copula model is fitted to the time series and in the case of Gaussian copulas, we show that the likelihood estimator of the correlation matrix is strongly consistent. We carefully check all our assumptions for two prototypical examples: a GARCH/INGARCH model and logistic/log-linear INGARCH model. Our results are illustrated with numerical experiments as well as two real data sets.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":"232 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1474","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
We introduce a general approach for modeling the dynamic of multivariate time series when the data are of mixed type (binary/count/continuous). Our method is quite flexible and conditionally on past values, each coordinate at time $t$ can have a distribution compatible with a standard univariate time series model such as GARCH, ARMA, INGARCH or logistic models whereas past values of the other coordinates play the role of exogenous covariates in the dynamic. The simultaneous dependence in the multivariate time series can be modeled with a copula. Additional exogenous covariates are also allowed in the dynamic. We first study usual stability properties of these models and then show that autoregressive parameters can be consistently estimated equation-by-equation using a pseudo-maximum likelihood method, leading to a fast implementation even when the number of time series is large. Moreover, we prove consistency results when a parametric copula model is fitted to the time series and in the case of Gaussian copulas, we show that the likelihood estimator of the correlation matrix is strongly consistent. We carefully check all our assumptions for two prototypical examples: a GARCH/INGARCH model and logistic/log-linear INGARCH model. Our results are illustrated with numerical experiments as well as two real data sets.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.