Extrapolation of stationary random fields via level sets

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2021-08-27 DOI:10.1090/tpms/1166
Abhinav B. Das, Vitalii Makogin, E. Spodarev
{"title":"Extrapolation of stationary random fields via level sets","authors":"Abhinav B. Das, Vitalii Makogin, E. Spodarev","doi":"10.1090/tpms/1166","DOIUrl":null,"url":null,"abstract":"In this paper, we use the concept of excursion sets for the extrapolation of stationary random fields. Doing so, we define excursion sets for the field and its linear predictor, and then minimize the expected volume of the symmetric difference of these sets under the condition that the univariate distributions of the predictor and of the field itself coincide. We illustrate the new approach on Gaussian random fields.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we use the concept of excursion sets for the extrapolation of stationary random fields. Doing so, we define excursion sets for the field and its linear predictor, and then minimize the expected volume of the symmetric difference of these sets under the condition that the univariate distributions of the predictor and of the field itself coincide. We illustrate the new approach on Gaussian random fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过水平集的平稳随机场外推
在本文中,我们使用偏移集的概念来外推平稳随机场。这样,我们定义了场及其线性预测器的偏移集,然后在预测器和场本身的单变量分布一致的条件下,最小化这些集的对称差的预期体积。我们举例说明了高斯随机场的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1