Maryam Khosravy, F. Hosseini, M. Razavi, Ramazan Ali Khavari
{"title":"Expression of Biofilm-Related Genes in Extensively Drug-Resistant Acinetobacter baumannii","authors":"Maryam Khosravy, F. Hosseini, M. Razavi, Ramazan Ali Khavari","doi":"10.5812/jjm-133999","DOIUrl":null,"url":null,"abstract":"Background: Acinetobacter baumannii is an important cause of nosocomial pneumonia in patients requiring long-term mechanical ventilation. Besides, extensively drug-resistant (XDR) strains cause infection in intensive care unit (ICU) patients. Chronic infections of A. baumannii and antimicrobial resistance are associated with biofilm formation. Several virulence genes, such as blaPER-1, pgaA, and bap, are involved in biofilm formation. Objectives: The current study examines the expression levels of biofilm formation-related genes in pneumonia patients. Methods: The sputum samples were collected from patients hospitalized in the ICU, and A. baumannii ATCC 19606, the reference strain, was isolated and cultured on blood agar, eosin methylene blue agar, and chocolate agar medium. The media were then incubated at 37°C for 18 - 24 hours. Next, Gram-Thirty XDR A. baumannii isolates were collected from the sputum samples of ICU patients at Besat Hospital in Tehran, Iran. Bacterial isolates were characterized for antibiotic resistance patterns and biofilm-forming ability. Subsequently, RNA was extracted from the biofilm-forming isolates. A real-time polymerase chain reaction (PCR) assay was performed to evaluate the expression levels of the blaPER-1, pgaA, and bap genes. Transcripts were normalized to 16S rRNA as an internal control, and gene expression fold changes were calculated. Statistical analysis was performed using an unpaired two-tailed t-test (P < 0.05) with SPSS (V. 16). Results: The disk diffusion susceptibility test revealed that all 30 (100%) isolates were resistant to piperacillin-tazobactam, cefepime, ceftriaxone, ceftazidime, gentamicin, imipenem, meropenem, levofloxacin, and ciprofloxacin. All 30 isolates from ICU-admitted patients (100%) were classified as XDR, and 27 (90%) isolates demonstrated the ability to form biofilms. The obtained results indicated a significant difference in gene expression levels. The fold change in expression for blaPER-1, bap, and pgaA was 7.473, 11.964, and 5.277, respectively. Conclusions: In our study, XDR A. baumannii primarily caused ventilator-associated pneumonia, and an observed increase in the expression of biofilm-related genes was noted in these strains. Healthcare centers should implement appropriate infection control programs to manage nosocomial infections, particularly in the ICU.","PeriodicalId":17803,"journal":{"name":"Jundishapur Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/jjm-133999","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acinetobacter baumannii is an important cause of nosocomial pneumonia in patients requiring long-term mechanical ventilation. Besides, extensively drug-resistant (XDR) strains cause infection in intensive care unit (ICU) patients. Chronic infections of A. baumannii and antimicrobial resistance are associated with biofilm formation. Several virulence genes, such as blaPER-1, pgaA, and bap, are involved in biofilm formation. Objectives: The current study examines the expression levels of biofilm formation-related genes in pneumonia patients. Methods: The sputum samples were collected from patients hospitalized in the ICU, and A. baumannii ATCC 19606, the reference strain, was isolated and cultured on blood agar, eosin methylene blue agar, and chocolate agar medium. The media were then incubated at 37°C for 18 - 24 hours. Next, Gram-Thirty XDR A. baumannii isolates were collected from the sputum samples of ICU patients at Besat Hospital in Tehran, Iran. Bacterial isolates were characterized for antibiotic resistance patterns and biofilm-forming ability. Subsequently, RNA was extracted from the biofilm-forming isolates. A real-time polymerase chain reaction (PCR) assay was performed to evaluate the expression levels of the blaPER-1, pgaA, and bap genes. Transcripts were normalized to 16S rRNA as an internal control, and gene expression fold changes were calculated. Statistical analysis was performed using an unpaired two-tailed t-test (P < 0.05) with SPSS (V. 16). Results: The disk diffusion susceptibility test revealed that all 30 (100%) isolates were resistant to piperacillin-tazobactam, cefepime, ceftriaxone, ceftazidime, gentamicin, imipenem, meropenem, levofloxacin, and ciprofloxacin. All 30 isolates from ICU-admitted patients (100%) were classified as XDR, and 27 (90%) isolates demonstrated the ability to form biofilms. The obtained results indicated a significant difference in gene expression levels. The fold change in expression for blaPER-1, bap, and pgaA was 7.473, 11.964, and 5.277, respectively. Conclusions: In our study, XDR A. baumannii primarily caused ventilator-associated pneumonia, and an observed increase in the expression of biofilm-related genes was noted in these strains. Healthcare centers should implement appropriate infection control programs to manage nosocomial infections, particularly in the ICU.
期刊介绍:
Jundishapur Journal of Microbiology, (JJM) is the official scientific Monthly publication of Ahvaz Jundishapur University of Medical Sciences. JJM is dedicated to the publication of manuscripts on topics concerning all aspects of microbiology. The topics include medical, veterinary and environmental microbiology, molecular investigations and infectious diseases. Aspects of immunology and epidemiology of infectious diseases are also considered.