{"title":"Machine Learning Enabled Solutions for Design and Optimization Challenges in Networks-on-Chip based Multi/Many-Core Architectures","authors":"Md Farhadur Reza","doi":"10.1145/3591470","DOIUrl":null,"url":null,"abstract":"Due to the advancement of transistor technology, a single chip processor can now have hundreds of cores. Network-on-Chip (NoC) has been the superior interconnect fabric for multi/many-core on-chip systems because of its scalability and parallelism. Due to the rise of dark silicon with the end of Dennard Scaling, it becomes essential to design energy efficient and high performance heterogeneous NoC-based multi/many-core architectures. Because of the large and complex design space, the solution space becomes difficult to explore within a reasonable time for optimal trade-offs of energy-performance-reliability. Furthermore, reactive resource management is not effective in preventing problems from happening in adaptive systems. Therefore, in this work, we explore machine learning techniques to design and configure the NoC resources based on the learning of the system and applications workloads. Machine learning can automatically learn from past experiences and guide the NoC intelligently to achieve its objective on performance, power, and reliability. We present the challenges of NoC design and resource management and propose a generalized machine learning framework to uncover near-optimal solutions quickly. We propose and implement a NoC design and optimization solution enabled by neural networks, using the generalized machine learning framework. Simulation results demonstrated that the proposed neural networks-based design and optimization solution improves performance by 15% and reduces energy consumption by 6% compared to an existing non-machine learning-based solution while the proposed solution improves NoC latency and throughput compared to two existing machine learning-based NoC optimization solutions. The challenges of machine learning technique adaptation in multi/many-core NoC have been presented to guide future research.","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"30 1","pages":"1 - 26"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3591470","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the advancement of transistor technology, a single chip processor can now have hundreds of cores. Network-on-Chip (NoC) has been the superior interconnect fabric for multi/many-core on-chip systems because of its scalability and parallelism. Due to the rise of dark silicon with the end of Dennard Scaling, it becomes essential to design energy efficient and high performance heterogeneous NoC-based multi/many-core architectures. Because of the large and complex design space, the solution space becomes difficult to explore within a reasonable time for optimal trade-offs of energy-performance-reliability. Furthermore, reactive resource management is not effective in preventing problems from happening in adaptive systems. Therefore, in this work, we explore machine learning techniques to design and configure the NoC resources based on the learning of the system and applications workloads. Machine learning can automatically learn from past experiences and guide the NoC intelligently to achieve its objective on performance, power, and reliability. We present the challenges of NoC design and resource management and propose a generalized machine learning framework to uncover near-optimal solutions quickly. We propose and implement a NoC design and optimization solution enabled by neural networks, using the generalized machine learning framework. Simulation results demonstrated that the proposed neural networks-based design and optimization solution improves performance by 15% and reduces energy consumption by 6% compared to an existing non-machine learning-based solution while the proposed solution improves NoC latency and throughput compared to two existing machine learning-based NoC optimization solutions. The challenges of machine learning technique adaptation in multi/many-core NoC have been presented to guide future research.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors