T. Koeppe, J. Enslin, Tony Putman, Mark Johnson, Peter Hoeflich
{"title":"H2-Orange: Finding Energy Storage Solutions for Decarbonizing Generation","authors":"T. Koeppe, J. Enslin, Tony Putman, Mark Johnson, Peter Hoeflich","doi":"10.1109/MPEL.2023.3271200","DOIUrl":null,"url":null,"abstract":"This article describes the objectives and key results from a feasibility study about using hydrogen (H2) generation and storage in a co-firing project sponsored by the U.S. Department of Energy (DOE) named H2 Orange. The work includes a conceptual design, including a technoeconomic study, technology gap assessment, maturation plan, and commercialization plan of a nominal 50-megawatt hours (MWh) electrolysis-based hydrogen energy storage system. The project investigated optimal sizing, design, and integration of a hydrogen energy storage system with an existing 14.3-megawatt (MW) gas turbine supplying both electricity and thermal power at the Clemson University combined heat and power (CHP) plant. It is anticipated that the integration of H2 storage with CHP will be able to provide the Clemson campus with backup capability (power and steam) that includes on-site solar photovoltaic (PV) arrays and separate battery energy storage. Power electronic conversion technologies are of key relevance to hydrogen storage for decarbonizing fossil fuel generators at all levels of this project.","PeriodicalId":13049,"journal":{"name":"IEEE Power Electronics Magazine","volume":"27 1","pages":"28-33"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MPEL.2023.3271200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes the objectives and key results from a feasibility study about using hydrogen (H2) generation and storage in a co-firing project sponsored by the U.S. Department of Energy (DOE) named H2 Orange. The work includes a conceptual design, including a technoeconomic study, technology gap assessment, maturation plan, and commercialization plan of a nominal 50-megawatt hours (MWh) electrolysis-based hydrogen energy storage system. The project investigated optimal sizing, design, and integration of a hydrogen energy storage system with an existing 14.3-megawatt (MW) gas turbine supplying both electricity and thermal power at the Clemson University combined heat and power (CHP) plant. It is anticipated that the integration of H2 storage with CHP will be able to provide the Clemson campus with backup capability (power and steam) that includes on-site solar photovoltaic (PV) arrays and separate battery energy storage. Power electronic conversion technologies are of key relevance to hydrogen storage for decarbonizing fossil fuel generators at all levels of this project.