Mosedul Sarkar, S. Maurya, Partha P. Gopmandal, Sankar Sarkar
{"title":"Hydrodynamics of flow through a degraded channel bed","authors":"Mosedul Sarkar, S. Maurya, Partha P. Gopmandal, Sankar Sarkar","doi":"10.1080/14685248.2021.2007256","DOIUrl":null,"url":null,"abstract":"This article presents experimental results of turbulent flow measured in a bimodal degraded channel bed consisting of sand-gravel mixture. Sand and gravel of uniform sizes 0.25 and 3.5 mm were mixed in the same proportions (by weight) to create a bimodal sedimentary bed. A three-dimensional Vectrino velocimeter was employed to collect three-dimensional velocities over bimodal degraded bed under equilibrium condition. The streamwise velocity, Reynolds stresses, turbulent kinetic energy (TKE), and TKE fluxes profiles were compared with the literature. However, the advancement of the existing knowledge was done by exploring the laws of turbulence. To this end, the velocity structure function method was applied. Second and third-order streamwise velocity structure functions followed by mixed third-order velocity structure functions revealed the existence of inertial subrange. The TKE dissipation rate was estimated using Kolmogorov’s and Monin–Yaglom’s scaling laws of turbulence. The anisotropy analysis indicated anisotropic turbulence in the near-bed, whereas above the initial bed-level, the anisotropy tends to follow three-dimensional isotropy. The present study notably enhances the understanding of turbulent flow through a degraded bed by demonstrating the legitimacy of laws of turbulence at different locations over the bed and providing a comprehensible acquaintance in TKE budget and Reynolds stress anisotropy.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"15 1-6","pages":"814 - 842"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.2007256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
This article presents experimental results of turbulent flow measured in a bimodal degraded channel bed consisting of sand-gravel mixture. Sand and gravel of uniform sizes 0.25 and 3.5 mm were mixed in the same proportions (by weight) to create a bimodal sedimentary bed. A three-dimensional Vectrino velocimeter was employed to collect three-dimensional velocities over bimodal degraded bed under equilibrium condition. The streamwise velocity, Reynolds stresses, turbulent kinetic energy (TKE), and TKE fluxes profiles were compared with the literature. However, the advancement of the existing knowledge was done by exploring the laws of turbulence. To this end, the velocity structure function method was applied. Second and third-order streamwise velocity structure functions followed by mixed third-order velocity structure functions revealed the existence of inertial subrange. The TKE dissipation rate was estimated using Kolmogorov’s and Monin–Yaglom’s scaling laws of turbulence. The anisotropy analysis indicated anisotropic turbulence in the near-bed, whereas above the initial bed-level, the anisotropy tends to follow three-dimensional isotropy. The present study notably enhances the understanding of turbulent flow through a degraded bed by demonstrating the legitimacy of laws of turbulence at different locations over the bed and providing a comprehensible acquaintance in TKE budget and Reynolds stress anisotropy.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.