A hierarchical Bayesian approach for calibration of stochastic material models

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2021-12-17 DOI:10.1017/dce.2021.20
Nikolaos Papadimas, T. Dodwell
{"title":"A hierarchical Bayesian approach for calibration of stochastic material models","authors":"Nikolaos Papadimas, T. Dodwell","doi":"10.1017/dce.2021.20","DOIUrl":null,"url":null,"abstract":"Abstract This article recasts the traditional challenge of calibrating a material constitutive model into a hierarchical probabilistic framework. We consider a Bayesian framework where material parameters are assigned distributions, which are then updated given experimental data. Importantly, in true engineering setting, we are not interested in inferring the parameters for a single experiment, but rather inferring the model parameters over the population of possible experimental samples. In doing so, we seek to also capture the inherent variability of the material from coupon-to-coupon, as well as uncertainties around the repeatability of the test. In this article, we address this problem using a hierarchical Bayesian model. However, a vanilla computational approach is prohibitively expensive. Our strategy marginalizes over each individual experiment, decreasing the dimension of our inference problem to only the hyperparameter—those parameter describing the population statistics of the material model only. Importantly, this marginalization step, requires us to derive an approximate likelihood, for which, we exploit an emulator (built offline prior to sampling) and Bayesian quadrature, allowing us to capture the uncertainty in this numerical approximation. Importantly, our approach renders hierarchical Bayesian calibration of material models computational feasible. The approach is tested in two different examples. The first is a compression test of simple spring model using synthetic data; the second, a more complex example using real experiment data to fit a stochastic elastoplastic model for 3D-printed steel.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":"10 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2021.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract This article recasts the traditional challenge of calibrating a material constitutive model into a hierarchical probabilistic framework. We consider a Bayesian framework where material parameters are assigned distributions, which are then updated given experimental data. Importantly, in true engineering setting, we are not interested in inferring the parameters for a single experiment, but rather inferring the model parameters over the population of possible experimental samples. In doing so, we seek to also capture the inherent variability of the material from coupon-to-coupon, as well as uncertainties around the repeatability of the test. In this article, we address this problem using a hierarchical Bayesian model. However, a vanilla computational approach is prohibitively expensive. Our strategy marginalizes over each individual experiment, decreasing the dimension of our inference problem to only the hyperparameter—those parameter describing the population statistics of the material model only. Importantly, this marginalization step, requires us to derive an approximate likelihood, for which, we exploit an emulator (built offline prior to sampling) and Bayesian quadrature, allowing us to capture the uncertainty in this numerical approximation. Importantly, our approach renders hierarchical Bayesian calibration of material models computational feasible. The approach is tested in two different examples. The first is a compression test of simple spring model using synthetic data; the second, a more complex example using real experiment data to fit a stochastic elastoplastic model for 3D-printed steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机材料模型的分层贝叶斯校正方法
摘要:本文将传统的材料本构模型的校准问题转化为一个层次概率框架。我们考虑一个贝叶斯框架,其中材料参数被分配分布,然后根据实验数据更新。重要的是,在真正的工程环境中,我们对推断单个实验的参数不感兴趣,而是推断可能实验样本总体上的模型参数。在这样做的过程中,我们还试图捕获材料从优惠券到优惠券的固有可变性,以及围绕测试可重复性的不确定性。在本文中,我们使用分层贝叶斯模型来解决这个问题。然而,普通的计算方法是非常昂贵的。我们的策略将每个单独的实验边缘化,将我们的推理问题的维度降低到只有超参数-那些只描述材料模型的总体统计的参数。重要的是,这个边缘化步骤需要我们推导出一个近似的似然,为此,我们利用模拟器(在采样之前离线构建)和贝叶斯正交,允许我们捕获这个数值近似中的不确定性。重要的是,我们的方法使材料模型的分层贝叶斯校准在计算上可行。该方法在两个不同的示例中进行了测试。首先利用合成数据对简单弹簧模型进行压缩试验;第二,一个更复杂的例子,使用实际实验数据拟合3d打印钢的随机弹塑性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1