Gazi Hasanuzzaman, S. Merbold, V. Motuz, C. Egbers
{"title":"Enhanced outer peaks in turbulent boundary layer using uniform blowing at moderate Reynolds number","authors":"Gazi Hasanuzzaman, S. Merbold, V. Motuz, C. Egbers","doi":"10.1080/14685248.2021.2014058","DOIUrl":null,"url":null,"abstract":"Uniform blowing through a permeable surface acts as an active flow control method in wall bounded flows. Such control technique was investigated in a zero pressure gradient turbulent boundary layer over a flat plate. Measurement data were obtained with the help of Laser Doppler Anemometry technique. Besides the drag reduction characteristics of such flow control method, time averaged measurement of stream-wise and wall-normal velocity components was taken at Reynolds number based on momentum thickness ( ) of 1100–3670. Due to the difference in surface condition with and without blowing, mean properties of the boundary condition at wall influence the flow properties when scaled with outer scaling properties. Enhanced turbulence is observed in Reynolds stresses using statistical analysis including the thickening of the boundary layer.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"68 - 95"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.2014058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
Uniform blowing through a permeable surface acts as an active flow control method in wall bounded flows. Such control technique was investigated in a zero pressure gradient turbulent boundary layer over a flat plate. Measurement data were obtained with the help of Laser Doppler Anemometry technique. Besides the drag reduction characteristics of such flow control method, time averaged measurement of stream-wise and wall-normal velocity components was taken at Reynolds number based on momentum thickness ( ) of 1100–3670. Due to the difference in surface condition with and without blowing, mean properties of the boundary condition at wall influence the flow properties when scaled with outer scaling properties. Enhanced turbulence is observed in Reynolds stresses using statistical analysis including the thickening of the boundary layer.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.